Validation of the linear amplitude sweep as accelerated fatigue protocol for damage resistance estimation of asphalt binder

IF 3.4 3区 工程技术 Q2 CONSTRUCTION & BUILDING TECHNOLOGY
Chao Wang, Yanguang Sun, Zhengyang Ren
{"title":"Validation of the linear amplitude sweep as accelerated fatigue protocol for damage resistance estimation of asphalt binder","authors":"Chao Wang,&nbsp;Yanguang Sun,&nbsp;Zhengyang Ren","doi":"10.1617/s11527-025-02589-x","DOIUrl":null,"url":null,"abstract":"<div><p>In recent years, the linear amplitude sweep test (LAS) and the time sweep (TS) test under dynamic shear are widely used to evaluate the damage resistance of paving asphalt. This paper attempts to demonstrate the possibility of using the LAS test as the accelerated fatigue protocol for damage resistance estimation of asphalt from perspectives of crack initiation and propagation. Both the finite element (FE) simulation and experimental work based on fracture mechanics are conducted for this purpose, followed by the verification on the traditional TS fatigue test. The FE model of the cylindrical asphalt sample is created by means of the FRANC2d/L software to identify the cracking mode under the crack propagation phase. The LAS test results show that the damage evolution behavior follows the two-phase crack growth (TPCG) model and the crack propagation is governed by mode-I cracking, which is consistent to the FE-based numerical simulation. The TS test results show that the TPCG model in the LAS protocol can be utilized to reasonably distinguish the crack initiation and propagation resistance of different asphalts. The polymer modification on asphalt can significantly improve its fatigue damage resistance.</p></div>","PeriodicalId":691,"journal":{"name":"Materials and Structures","volume":"58 2","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials and Structures","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1617/s11527-025-02589-x","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

In recent years, the linear amplitude sweep test (LAS) and the time sweep (TS) test under dynamic shear are widely used to evaluate the damage resistance of paving asphalt. This paper attempts to demonstrate the possibility of using the LAS test as the accelerated fatigue protocol for damage resistance estimation of asphalt from perspectives of crack initiation and propagation. Both the finite element (FE) simulation and experimental work based on fracture mechanics are conducted for this purpose, followed by the verification on the traditional TS fatigue test. The FE model of the cylindrical asphalt sample is created by means of the FRANC2d/L software to identify the cracking mode under the crack propagation phase. The LAS test results show that the damage evolution behavior follows the two-phase crack growth (TPCG) model and the crack propagation is governed by mode-I cracking, which is consistent to the FE-based numerical simulation. The TS test results show that the TPCG model in the LAS protocol can be utilized to reasonably distinguish the crack initiation and propagation resistance of different asphalts. The polymer modification on asphalt can significantly improve its fatigue damage resistance.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials and Structures
Materials and Structures 工程技术-材料科学:综合
CiteScore
6.40
自引率
7.90%
发文量
222
审稿时长
5.9 months
期刊介绍: Materials and Structures, the flagship publication of the International Union of Laboratories and Experts in Construction Materials, Systems and Structures (RILEM), provides a unique international and interdisciplinary forum for new research findings on the performance of construction materials. A leader in cutting-edge research, the journal is dedicated to the publication of high quality papers examining the fundamental properties of building materials, their characterization and processing techniques, modeling, standardization of test methods, and the application of research results in building and civil engineering. Materials and Structures also publishes comprehensive reports prepared by the RILEM’s technical committees.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信