Modeling Synchronized Propagation of Two Symmetric Waves in a New Two-Mode Extension of the \((1+1)\)-Dimensional Chaffee-Infante Model

IF 1.3 4区 物理与天体物理 Q3 PHYSICS, MULTIDISCIPLINARY
Imad Jaradat, Marwan Alquran, Mohammed Ali, Rawya Al-deiakeh
{"title":"Modeling Synchronized Propagation of Two Symmetric Waves in a New Two-Mode Extension of the \\((1+1)\\)-Dimensional Chaffee-Infante Model","authors":"Imad Jaradat,&nbsp;Marwan Alquran,&nbsp;Mohammed Ali,&nbsp;Rawya Al-deiakeh","doi":"10.1007/s10773-025-05914-w","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, specific functional operators, referred to as two-mode operators, are utilized to extend the <span>\\((1+1)\\)</span>-dimensional Chaffee-Infante model into a generalized second-order evolutionary partial differential equation in the time coordinate. This extended model, termed the two-mode Chaffee-Infante model, characterizes the motion of two synchronized symmetric waves propagating under the influence of three embedded parameters: dispersion, nonlinearity, and phase velocity. Two effective methods, the extended tanh(coth)-expansion method and the sine(cosine)-function method, are employed to derive several traveling solutions for the proposed model. Additionally, the impact of other parameters on the propagation behavior of the TMCI is explored. It is believed that the findings in this paper will offer valuable insights into the study of nonlinear models of second-order in the time-coordinate.</p></div>","PeriodicalId":597,"journal":{"name":"International Journal of Theoretical Physics","volume":"64 2","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Theoretical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10773-025-05914-w","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, specific functional operators, referred to as two-mode operators, are utilized to extend the \((1+1)\)-dimensional Chaffee-Infante model into a generalized second-order evolutionary partial differential equation in the time coordinate. This extended model, termed the two-mode Chaffee-Infante model, characterizes the motion of two synchronized symmetric waves propagating under the influence of three embedded parameters: dispersion, nonlinearity, and phase velocity. Two effective methods, the extended tanh(coth)-expansion method and the sine(cosine)-function method, are employed to derive several traveling solutions for the proposed model. Additionally, the impact of other parameters on the propagation behavior of the TMCI is explored. It is believed that the findings in this paper will offer valuable insights into the study of nonlinear models of second-order in the time-coordinate.

在\((1+1)\)维Chaffee-Infante模型的新双模扩展中模拟两个对称波的同步传播
本文利用特定的泛函算子,即双模算子,将\((1+1)\)维Chaffee-Infante模型在时间坐标上扩展为广义的二阶进化偏微分方程。这个扩展模型被称为双模Chaffee-Infante模型,它描述了两个同步对称波在三个嵌入参数(色散、非线性和相速度)的影响下传播的运动。采用扩展tanh(coth)展开法和正弦(余弦)函数法两种有效的方法,得到了该模型的多个旅行解。此外,还探讨了其他参数对TMCI传播行为的影响。相信本文的研究结果将为时间坐标下二阶非线性模型的研究提供有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.50
自引率
21.40%
发文量
258
审稿时长
3.3 months
期刊介绍: International Journal of Theoretical Physics publishes original research and reviews in theoretical physics and neighboring fields. Dedicated to the unification of the latest physics research, this journal seeks to map the direction of future research by original work in traditional physics like general relativity, quantum theory with relativistic quantum field theory,as used in particle physics, and by fresh inquiry into quantum measurement theory, and other similarly fundamental areas, e.g. quantum geometry and quantum logic, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信