Characterization of physicochemical composition of asphalt/aggregate and multi-scale analysis of interfacial adhesion behavior

IF 3.4 3区 工程技术 Q2 CONSTRUCTION & BUILDING TECHNOLOGY
Guoqing Sun, Jiupeng Zhang, Zhenxing Niu, Yucheng Huang, Peixin Shi, Shuxian Zhang
{"title":"Characterization of physicochemical composition of asphalt/aggregate and multi-scale analysis of interfacial adhesion behavior","authors":"Guoqing Sun,&nbsp;Jiupeng Zhang,&nbsp;Zhenxing Niu,&nbsp;Yucheng Huang,&nbsp;Peixin Shi,&nbsp;Shuxian Zhang","doi":"10.1617/s11527-025-02592-2","DOIUrl":null,"url":null,"abstract":"<div><p>This paper comprehensively studies the interface characters and behaviors of asphalt-aggregate by laboratory tests and molecular dynamics (MD) simulations. To accurately build the molecular model of asphalt-aggregate interface system and explore the nano-scale adhesion mechanism, the physicochemical composition of SARA components (saturate, aromatic, resin, and asphaltene) is characterized by macro–micro tests including SARA components separation and elemental analyzer. The mineral composition of aggregate is analyzed by X-ray diffraction test. The adhesion work, diffusion behavior and relative distribution of SARA components on aggregate surface are analyzed based on MD simulations. The results show that the influence of aggregate type on adhesion work is higher than that of asphalt type. The interfacial adhesion strength law obtained by pull-off test is highly consistent with the simulation results. Diffusion behavior is related to the polarity and proportion of SARA components and mineral types. Polar components have strong adhesion to minerals and are concentrated near the surface of minerals, and they are easily adsorbed on the surfaces of alkaline minerals such as calcite and albite. The adsorption characteristics of mineral surface will be affected by the proportion of SARA components.</p></div>","PeriodicalId":691,"journal":{"name":"Materials and Structures","volume":"58 2","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials and Structures","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1617/s11527-025-02592-2","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

This paper comprehensively studies the interface characters and behaviors of asphalt-aggregate by laboratory tests and molecular dynamics (MD) simulations. To accurately build the molecular model of asphalt-aggregate interface system and explore the nano-scale adhesion mechanism, the physicochemical composition of SARA components (saturate, aromatic, resin, and asphaltene) is characterized by macro–micro tests including SARA components separation and elemental analyzer. The mineral composition of aggregate is analyzed by X-ray diffraction test. The adhesion work, diffusion behavior and relative distribution of SARA components on aggregate surface are analyzed based on MD simulations. The results show that the influence of aggregate type on adhesion work is higher than that of asphalt type. The interfacial adhesion strength law obtained by pull-off test is highly consistent with the simulation results. Diffusion behavior is related to the polarity and proportion of SARA components and mineral types. Polar components have strong adhesion to minerals and are concentrated near the surface of minerals, and they are easily adsorbed on the surfaces of alkaline minerals such as calcite and albite. The adsorption characteristics of mineral surface will be affected by the proportion of SARA components.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials and Structures
Materials and Structures 工程技术-材料科学:综合
CiteScore
6.40
自引率
7.90%
发文量
222
审稿时长
5.9 months
期刊介绍: Materials and Structures, the flagship publication of the International Union of Laboratories and Experts in Construction Materials, Systems and Structures (RILEM), provides a unique international and interdisciplinary forum for new research findings on the performance of construction materials. A leader in cutting-edge research, the journal is dedicated to the publication of high quality papers examining the fundamental properties of building materials, their characterization and processing techniques, modeling, standardization of test methods, and the application of research results in building and civil engineering. Materials and Structures also publishes comprehensive reports prepared by the RILEM’s technical committees.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信