D. Bharath, R. Vanathi Vijayalakshmi, P. Praveen Kumar, R. B. Prasanna
{"title":"Hydrophobic, mechanical and anti-bacterial properties of selenium nanoparticles coated cotton fabrics","authors":"D. Bharath, R. Vanathi Vijayalakshmi, P. Praveen Kumar, R. B. Prasanna","doi":"10.1007/s13204-025-03081-2","DOIUrl":null,"url":null,"abstract":"<div><p>In recent years, the advancement of nanotechnology has created a great impact on the textile industry. Adhering to nanoscale levels, fabric surfaces have a wide variety of uses including ultraviolet (UV) protection, antibacterial resistance, wrinkle resistance, and flame retardance. In this work, selenium nanoparticles were synthesized and coated over three distinct cotton-woven fabrics (i.e.) organic, poplin, and muslin cotton fabrics. The respective coated fabrics were examined using X-ray diffraction analysis (XRD) which exhibits high crystallinity with an average size of 11 nm. The existence of cellulose peak has been confirmed from FTIR analysis. SEM images illustrate that the selenium nanoparticles have been coated on the respective fabrics. According to measurements of water contact angle, cotton fabric from muslin exhibits higher levels of hydrophobicity than other types. Colorfastness study has revealed that poplin cotton discloses higher color strength than others. Washing durability and tensile properties of the coated fabric has also been examined. The results of the antibacterial test showed that the presence of selenium nanoparticles significantly enhanced the antibacterial performance against three different bacterial strains, including <i>Pseudomonas aeruginosa</i>, <i>Staphylococcus aureus</i>, <i>Escherichia coli</i> using the disk diffusion method and its Zone of Inhibition (ZOI) were measured. Out of the three fabrics, poplin cotton has superior antibacterial properties.</p></div>","PeriodicalId":471,"journal":{"name":"Applied Nanoscience","volume":"15 1","pages":""},"PeriodicalIF":3.6740,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Nanoscience","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s13204-025-03081-2","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
In recent years, the advancement of nanotechnology has created a great impact on the textile industry. Adhering to nanoscale levels, fabric surfaces have a wide variety of uses including ultraviolet (UV) protection, antibacterial resistance, wrinkle resistance, and flame retardance. In this work, selenium nanoparticles were synthesized and coated over three distinct cotton-woven fabrics (i.e.) organic, poplin, and muslin cotton fabrics. The respective coated fabrics were examined using X-ray diffraction analysis (XRD) which exhibits high crystallinity with an average size of 11 nm. The existence of cellulose peak has been confirmed from FTIR analysis. SEM images illustrate that the selenium nanoparticles have been coated on the respective fabrics. According to measurements of water contact angle, cotton fabric from muslin exhibits higher levels of hydrophobicity than other types. Colorfastness study has revealed that poplin cotton discloses higher color strength than others. Washing durability and tensile properties of the coated fabric has also been examined. The results of the antibacterial test showed that the presence of selenium nanoparticles significantly enhanced the antibacterial performance against three different bacterial strains, including Pseudomonas aeruginosa, Staphylococcus aureus, Escherichia coli using the disk diffusion method and its Zone of Inhibition (ZOI) were measured. Out of the three fabrics, poplin cotton has superior antibacterial properties.
期刊介绍:
Applied Nanoscience is a hybrid journal that publishes original articles about state of the art nanoscience and the application of emerging nanotechnologies to areas fundamental to building technologically advanced and sustainable civilization, including areas as diverse as water science, advanced materials, energy, electronics, environmental science and medicine. The journal accepts original and review articles as well as book reviews for publication. All the manuscripts are single-blind peer-reviewed for scientific quality and acceptance.