Ecofriendly colorimetric set-up coupled with mathematical filtration strategy for simultaneous determination of ipratropium and fenoterol in their novel anti-asthmatic metered dose inhaler

IF 4.3 2区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Salma N. Ali, Hoda M. Marzouk, Ahmed S. Fayed, Samah S. Saad
{"title":"Ecofriendly colorimetric set-up coupled with mathematical filtration strategy for simultaneous determination of ipratropium and fenoterol in their novel anti-asthmatic metered dose inhaler","authors":"Salma N. Ali,&nbsp;Hoda M. Marzouk,&nbsp;Ahmed S. Fayed,&nbsp;Samah S. Saad","doi":"10.1186/s13065-025-01397-2","DOIUrl":null,"url":null,"abstract":"<div><p>Ipratropium bromide (IPR) and fenoterol hydrobromide (FEN) are well-known medications for treating asthma and chronic obstructive pulmonary disease (COPD). A simple, feasible, efficient, and cost-effective colorimetric assay has been established for determination of the newly introduced co-formulated metered dose inhaler (Atrovent<sup>®</sup> comp HFA). The developed method is based on the properly optimized reaction of drugs under study with the charge transfer reagent 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ), resulting in orange-colored complexes measured at 464.3 and 514.0 nm for IPR and FEN, respectively. Smoothly applicable and easily manipulated resolution method, Vierordt’s method, based on straightforward mathematical equations that do not need complicated software was implemented for the simultaneous determination of IPR and FEN. The proposed methodology can be applied in routine analysis enabling fast and economical determination of the combined dosage form without the need for previous separation steps. The validity of the proposed colorimetric method was thoroughly assured as per ICH guidelines with acceptable accuracy and precision. The linearity ranges for IPR and FEN were 5.0–55.0 µg/mL and 10.0–40.0 µg/mL, respectively. Using cutting-edge software metric tools, namely the analytical greenness (AGREE), and complementary green analytical procedure index (ComplexGAPI), the greenness profile of the suggested method was clearly evaluated. The method also conformed well to the recently published blueness (BAGI tool) and whiteness (RGB12 tool) concepts.</p></div>","PeriodicalId":496,"journal":{"name":"BMC Chemistry","volume":"19 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://bmcchem.biomedcentral.com/counter/pdf/10.1186/s13065-025-01397-2","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1186/s13065-025-01397-2","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Ipratropium bromide (IPR) and fenoterol hydrobromide (FEN) are well-known medications for treating asthma and chronic obstructive pulmonary disease (COPD). A simple, feasible, efficient, and cost-effective colorimetric assay has been established for determination of the newly introduced co-formulated metered dose inhaler (Atrovent® comp HFA). The developed method is based on the properly optimized reaction of drugs under study with the charge transfer reagent 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ), resulting in orange-colored complexes measured at 464.3 and 514.0 nm for IPR and FEN, respectively. Smoothly applicable and easily manipulated resolution method, Vierordt’s method, based on straightforward mathematical equations that do not need complicated software was implemented for the simultaneous determination of IPR and FEN. The proposed methodology can be applied in routine analysis enabling fast and economical determination of the combined dosage form without the need for previous separation steps. The validity of the proposed colorimetric method was thoroughly assured as per ICH guidelines with acceptable accuracy and precision. The linearity ranges for IPR and FEN were 5.0–55.0 µg/mL and 10.0–40.0 µg/mL, respectively. Using cutting-edge software metric tools, namely the analytical greenness (AGREE), and complementary green analytical procedure index (ComplexGAPI), the greenness profile of the suggested method was clearly evaluated. The method also conformed well to the recently published blueness (BAGI tool) and whiteness (RGB12 tool) concepts.

新型抗哮喘计量吸入器中异丙托品和非诺特罗的生态友好比色装置与数学过滤策略的同时测定
异丙托溴铵(IPR)和非诺特罗氢溴化物(FEN)是众所周知的治疗哮喘和慢性阻塞性肺疾病(COPD)的药物。建立了一种简单、可行、高效且具有成本效益的比色法,用于测定新引入的共配制计量吸入器(Atrovent®comp HFA)。所建立的方法是基于对所研究药物与电荷转移试剂2,3-二氯-5,6-二氰-1,4-苯醌(DDQ)的反应进行适当优化,得到IPR和FEN在464.3 nm和514.0 nm处的橙色配合物。采用Vierordt方法同时测定IPR和FEN,该方法基于简单的数学方程,不需要复杂的软件。所提出的方法可用于常规分析,无需先前的分离步骤即可快速经济地测定组合剂型。所提出的比色法的有效性完全按照ICH指南得到保证,具有可接受的准确性和精密度。IPR和FEN的线性范围分别为5.0 ~ 55.0µg/mL和10.0 ~ 40.0µg/mL。利用先进的软件度量工具,即分析绿色度(AGREE)和互补绿色分析程序指数(ComplexGAPI),清晰地评估了所建议方法的绿色度概况。该方法也符合最近公布的蓝度(BAGI工具)和白度(RGB12工具)概念。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
BMC Chemistry
BMC Chemistry Chemistry-General Chemistry
CiteScore
5.30
自引率
2.20%
发文量
92
审稿时长
27 weeks
期刊介绍: BMC Chemistry, formerly known as Chemistry Central Journal, is now part of the BMC series journals family. Chemistry Central Journal has served the chemistry community as a trusted open access resource for more than 10 years – and we are delighted to announce the next step on its journey. In January 2019 the journal has been renamed BMC Chemistry and now strengthens the BMC series footprint in the physical sciences by publishing quality articles and by pushing the boundaries of open chemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信