Observation of Giant Zero-Field Cooled Spontaneous Exchange Bias Effect in La2FeCoO6 Double Perovskite Ceramic

IF 1.7 4区 物理与天体物理 Q3 PHYSICS, APPLIED
Lav Kush, Sanjay Srivastava
{"title":"Observation of Giant Zero-Field Cooled Spontaneous Exchange Bias Effect in La2FeCoO6 Double Perovskite Ceramic","authors":"Lav Kush,&nbsp;Sanjay Srivastava","doi":"10.1007/s10948-025-06927-6","DOIUrl":null,"url":null,"abstract":"<div><p>The La<sub>2</sub>FeCoO<sub>6</sub> ceramic was synthesized via the sol–gel route, and their temperature-dependent exchange bias (EB) effects have been analyzed at different magnetic fields. XRD investigation reveals that at a lower temperature, the monoclinic structure with the P2<sub>1</sub>/n space group was maintained, whereas, from room temperature to 450 K, the rhombohedral structure with the R3c space group was noticed. The tolerance factor suggested the presence of distortion, and the XPS analysis of Fe and Co confirms the defect sites in La<sub>2</sub>FeCoO<sub>6</sub>. Hence, the variety of magnetic phases formed during the FC and ZFC processes resulted in unidirectional anisotropy. Negative field cooling magnetization was observed in M-T measurements, and ferromagnetic clusters were detected at room temperature M-H measurements. Negative EB fields and upward shifts in hysteresis were observed at low temperatures. The hysteresis and EB fields changed below the Neel transition, with a transition from positive to negative EB observed with increasing magnetic field and temperature. The observed EB was attributed to the pinning effect of surface spins in interfacial frozen glassy states at the interface of large ferrimagnetic grains.</p></div>","PeriodicalId":669,"journal":{"name":"Journal of Superconductivity and Novel Magnetism","volume":"38 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Superconductivity and Novel Magnetism","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10948-025-06927-6","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

The La2FeCoO6 ceramic was synthesized via the sol–gel route, and their temperature-dependent exchange bias (EB) effects have been analyzed at different magnetic fields. XRD investigation reveals that at a lower temperature, the monoclinic structure with the P21/n space group was maintained, whereas, from room temperature to 450 K, the rhombohedral structure with the R3c space group was noticed. The tolerance factor suggested the presence of distortion, and the XPS analysis of Fe and Co confirms the defect sites in La2FeCoO6. Hence, the variety of magnetic phases formed during the FC and ZFC processes resulted in unidirectional anisotropy. Negative field cooling magnetization was observed in M-T measurements, and ferromagnetic clusters were detected at room temperature M-H measurements. Negative EB fields and upward shifts in hysteresis were observed at low temperatures. The hysteresis and EB fields changed below the Neel transition, with a transition from positive to negative EB observed with increasing magnetic field and temperature. The observed EB was attributed to the pinning effect of surface spins in interfacial frozen glassy states at the interface of large ferrimagnetic grains.

Abstract Image

La2FeCoO6双钙钛矿陶瓷巨零场冷却自发交换偏置效应的观察
采用溶胶-凝胶法制备了La2FeCoO6陶瓷,并对其在不同磁场下的温度依赖性交换偏置(EB)效应进行了分析。XRD分析表明,在较低的温度下,其与P21/n空间基团保持单斜斜结构,而从室温到450 K,其与R3c空间基团形成了菱形结构。公差因子表明存在变形,XPS分析Fe和Co证实了La2FeCoO6中的缺陷位点。因此,在FC和ZFC过程中形成的磁相的变化导致了单向各向异性。在M-T测量中观察到负场冷却磁化,在室温M-H测量中检测到铁磁团簇。在低温下观察到负电子场和滞回向上移动。磁滞场和EB场在Neel跃迁下发生变化,随着磁场和温度的增加,EB由正向负转变。观察到的EB归因于大铁磁颗粒界面冻结玻璃态的表面自旋的钉钉效应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Superconductivity and Novel Magnetism
Journal of Superconductivity and Novel Magnetism 物理-物理:凝聚态物理
CiteScore
3.70
自引率
11.10%
发文量
342
审稿时长
3.5 months
期刊介绍: The Journal of Superconductivity and Novel Magnetism serves as the international forum for the most current research and ideas in these fields. This highly acclaimed journal publishes peer-reviewed original papers, conference proceedings and invited review articles that examine all aspects of the science and technology of superconductivity, including new materials, new mechanisms, basic and technological properties, new phenomena, and small- and large-scale applications. Novel magnetism, which is expanding rapidly, is also featured in the journal. The journal focuses on such areas as spintronics, magnetic semiconductors, properties of magnetic multilayers, magnetoresistive materials and structures, magnetic oxides, etc. Novel superconducting and magnetic materials are complex compounds, and the journal publishes articles related to all aspects their study, such as sample preparation, spectroscopy and transport properties as well as various applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信