Quan-Doan Mai, Dang Thi Hanh Trang, Ta Ngoc Bach, Vo Thi Le Na, Anh-Tuan Pham and Anh-Tuan Le
{"title":"Synergizing PIERS and photocatalysis effects in a photo-responsive Ag/TiO2 nanostructure for an ultrasensitive and renewable PI-PC SERS technique†","authors":"Quan-Doan Mai, Dang Thi Hanh Trang, Ta Ngoc Bach, Vo Thi Le Na, Anh-Tuan Pham and Anh-Tuan Le","doi":"10.1039/D4RA07718K","DOIUrl":null,"url":null,"abstract":"<p >Surface-enhanced Raman spectroscopy (SERS) is a renowned analytical technique for non-invasive molecular identification. Advancements in SERS technology pivot on designing nano-structured substrates to enhance sensitivity and reliability. A key emerging trend involves integrating pre-treatment and post-treatment techniques on these substrates, leveraging advanced nanostructures to bring unique features, such as ultrasensitivity or reusability, to bridge the gap between laboratory and real-world applications of the SERS technique. Despite these advances, the synergistic application of pre- and post-treatment techniques on a single SERS substrate to fully exploit unique physicochemical effects remains underexplored. To address this, we introduce photo-induced-photo-catalytic SERS (PI-PC SERS), a novel technique that synergistically combines photo-induced enhanced Raman scattering (PIERS) and photocatalysis using a single Ag/TiO<small><sub>2</sub></small> nanocomposite structure. This method aims to deliver ultrasensitive sensing capabilities and reusability. The PI-PC SERS technique involves pre-irradiating the SERS substrate with UV light to amplify the Raman signal and post-irradiating to remove fouled analytes. Pre-irradiation enhances the SERS signal by several orders of magnitude compared to normal SERS, attributed to the PIERS effect. Consequently, the detection sensitivity for methylene blue (MB) using PI-PC SERS reaches 1.02 × 10<small><sup>−14</sup></small> M, significantly better than the 3.04 × 10<small><sup>−11</sup></small> M achieved with normal SERS. Similar enhancements are observed for thiram, with a limit of detection (LOD) of 1.02 × 10<small><sup>−11</sup></small> M for PI-PC SERS compared to 2.19 × 10<small><sup>−9</sup></small> M for normal SERS. Additionally, post-irradiation facilitates the removal of analyte molecules <em>via</em> photocatalysis, restoring the substrate to its pristine state, as the byproducts – water and CO<small><sub>2</sub></small> gas – are easily managed. Our findings demonstrate that PI-PC SERS creates ultrasensitive sensors and ensures substrate cleanliness and longevity. This method shows great promise for ultrasensitive, sustainable, and cost-effective applications in chemical sensing and molecular diagnostics.</p>","PeriodicalId":102,"journal":{"name":"RSC Advances","volume":" 6","pages":" 4149-4162"},"PeriodicalIF":3.9000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ra/d4ra07718k?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC Advances","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ra/d4ra07718k","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Surface-enhanced Raman spectroscopy (SERS) is a renowned analytical technique for non-invasive molecular identification. Advancements in SERS technology pivot on designing nano-structured substrates to enhance sensitivity and reliability. A key emerging trend involves integrating pre-treatment and post-treatment techniques on these substrates, leveraging advanced nanostructures to bring unique features, such as ultrasensitivity or reusability, to bridge the gap between laboratory and real-world applications of the SERS technique. Despite these advances, the synergistic application of pre- and post-treatment techniques on a single SERS substrate to fully exploit unique physicochemical effects remains underexplored. To address this, we introduce photo-induced-photo-catalytic SERS (PI-PC SERS), a novel technique that synergistically combines photo-induced enhanced Raman scattering (PIERS) and photocatalysis using a single Ag/TiO2 nanocomposite structure. This method aims to deliver ultrasensitive sensing capabilities and reusability. The PI-PC SERS technique involves pre-irradiating the SERS substrate with UV light to amplify the Raman signal and post-irradiating to remove fouled analytes. Pre-irradiation enhances the SERS signal by several orders of magnitude compared to normal SERS, attributed to the PIERS effect. Consequently, the detection sensitivity for methylene blue (MB) using PI-PC SERS reaches 1.02 × 10−14 M, significantly better than the 3.04 × 10−11 M achieved with normal SERS. Similar enhancements are observed for thiram, with a limit of detection (LOD) of 1.02 × 10−11 M for PI-PC SERS compared to 2.19 × 10−9 M for normal SERS. Additionally, post-irradiation facilitates the removal of analyte molecules via photocatalysis, restoring the substrate to its pristine state, as the byproducts – water and CO2 gas – are easily managed. Our findings demonstrate that PI-PC SERS creates ultrasensitive sensors and ensures substrate cleanliness and longevity. This method shows great promise for ultrasensitive, sustainable, and cost-effective applications in chemical sensing and molecular diagnostics.
期刊介绍:
An international, peer-reviewed journal covering all of the chemical sciences, including multidisciplinary and emerging areas. RSC Advances is a gold open access journal allowing researchers free access to research articles, and offering an affordable open access publishing option for authors around the world.