{"title":"Review of Advancements in Depression Detection Using Social Media Data","authors":"Sumit Dalal;Sarika Jain;Mayank Dave","doi":"10.1109/TCSS.2024.3448624","DOIUrl":null,"url":null,"abstract":"A large population embraced social media to share thoughts, emotions, and daily experiences through text, images, audio, or video posts. This user-generated content (UGC) serves various purposes, including user profiling, sentiment analysis, and disease detection or tracking. Notably, researchers recognized the potential of UGC for assessing mental health due to its unobtrusive and real-time monitoring capabilities. Recent reviews on depression identification from textual UGC using AI models covered tools and techniques but overlooked critical components such as datasets, lexicons, features, and subtasks, which are essential for understanding the progress and tasks undertaken. This survey adopts a systematic approach and formulates five research questions to examine the relevant literature concerning these elements. Additionally, it organizes machine learning and deep learning (ML/DL) training features from textual UGC in a hierarchical manner and maps the literature on depression detection into various subtasks. The review highlights that despite the prevalence studies, datasets are limited in both quantity and size, with many relying on less reliable ground truth collection methods such as self-reported diagnosis statements (SRDS). Furthermore, the review identifies an overemphasis on certain textual features, such as n-grams and affective elements, while others, such as life events, egocentric graphs, and intervention/coping style, remain largely unexplored. It is crucial for practical AI depression detection systems to develop expertise in tasks such as severity, symptom detection, and explainable/interpretable depression analysis to instill confidence and trust among users.","PeriodicalId":13044,"journal":{"name":"IEEE Transactions on Computational Social Systems","volume":"12 1","pages":"77-100"},"PeriodicalIF":4.5000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Computational Social Systems","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10749991/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, CYBERNETICS","Score":null,"Total":0}
引用次数: 0
Abstract
A large population embraced social media to share thoughts, emotions, and daily experiences through text, images, audio, or video posts. This user-generated content (UGC) serves various purposes, including user profiling, sentiment analysis, and disease detection or tracking. Notably, researchers recognized the potential of UGC for assessing mental health due to its unobtrusive and real-time monitoring capabilities. Recent reviews on depression identification from textual UGC using AI models covered tools and techniques but overlooked critical components such as datasets, lexicons, features, and subtasks, which are essential for understanding the progress and tasks undertaken. This survey adopts a systematic approach and formulates five research questions to examine the relevant literature concerning these elements. Additionally, it organizes machine learning and deep learning (ML/DL) training features from textual UGC in a hierarchical manner and maps the literature on depression detection into various subtasks. The review highlights that despite the prevalence studies, datasets are limited in both quantity and size, with many relying on less reliable ground truth collection methods such as self-reported diagnosis statements (SRDS). Furthermore, the review identifies an overemphasis on certain textual features, such as n-grams and affective elements, while others, such as life events, egocentric graphs, and intervention/coping style, remain largely unexplored. It is crucial for practical AI depression detection systems to develop expertise in tasks such as severity, symptom detection, and explainable/interpretable depression analysis to instill confidence and trust among users.
期刊介绍:
IEEE Transactions on Computational Social Systems focuses on such topics as modeling, simulation, analysis and understanding of social systems from the quantitative and/or computational perspective. "Systems" include man-man, man-machine and machine-machine organizations and adversarial situations as well as social media structures and their dynamics. More specifically, the proposed transactions publishes articles on modeling the dynamics of social systems, methodologies for incorporating and representing socio-cultural and behavioral aspects in computational modeling, analysis of social system behavior and structure, and paradigms for social systems modeling and simulation. The journal also features articles on social network dynamics, social intelligence and cognition, social systems design and architectures, socio-cultural modeling and representation, and computational behavior modeling, and their applications.