Broadband Ground-Embedded Dielectric Resonator Antenna With Half-Space Coverage for 5G Applications

IF 4.6 1区 计算机科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Lei Guo;Yipei Qiao;Wenwen Yang;Kwok Wa Leung
{"title":"Broadband Ground-Embedded Dielectric Resonator Antenna With Half-Space Coverage for 5G Applications","authors":"Lei Guo;Yipei Qiao;Wenwen Yang;Kwok Wa Leung","doi":"10.1109/TAP.2024.3520305","DOIUrl":null,"url":null,"abstract":"This communication presents a novel ground-embedded dielectric resonator (DR) antenna (DRA) which has a broad bandwidth and wide half-space coverage, based on the concept of complementary superimposition. By using the embedded ground, horizontal and vertical electric currents can be introduced. Their radiation can be combined with that of the original DRA, significantly boosting radiation at low elevation angles. This results in broad half-power beamwidths (HPBWs) of ~180° in two elevation planes. The design achieves wide half-space coverage across a wide bandwidth by exciting two adjacent modes. To validate the theory, the proposed antenna was fabricated and measured. Measured results show a broad usable impedance bandwidth of 2.35–3.55 GHz (40.68%), with HPBWs of ~180°. The maximum gains are 2.54 and 2.13 dBi at <inline-formula> <tex-math>$\\theta = 0^{\\circ }$ </tex-math></inline-formula> (boresight) and <inline-formula> <tex-math>$\\theta = 90^{\\circ }$ </tex-math></inline-formula>, respectively. Due to its embedded structure, our antenna is compact, making it promising for 5G applications that generally require both wide beamwidth and impedance bandwidth.","PeriodicalId":13102,"journal":{"name":"IEEE Transactions on Antennas and Propagation","volume":"73 2","pages":"1191-1196"},"PeriodicalIF":4.6000,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Antennas and Propagation","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10816353/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This communication presents a novel ground-embedded dielectric resonator (DR) antenna (DRA) which has a broad bandwidth and wide half-space coverage, based on the concept of complementary superimposition. By using the embedded ground, horizontal and vertical electric currents can be introduced. Their radiation can be combined with that of the original DRA, significantly boosting radiation at low elevation angles. This results in broad half-power beamwidths (HPBWs) of ~180° in two elevation planes. The design achieves wide half-space coverage across a wide bandwidth by exciting two adjacent modes. To validate the theory, the proposed antenna was fabricated and measured. Measured results show a broad usable impedance bandwidth of 2.35–3.55 GHz (40.68%), with HPBWs of ~180°. The maximum gains are 2.54 and 2.13 dBi at $\theta = 0^{\circ }$ (boresight) and $\theta = 90^{\circ }$ , respectively. Due to its embedded structure, our antenna is compact, making it promising for 5G applications that generally require both wide beamwidth and impedance bandwidth.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
10.40
自引率
28.10%
发文量
968
审稿时长
4.7 months
期刊介绍: IEEE Transactions on Antennas and Propagation includes theoretical and experimental advances in antennas, including design and development, and in the propagation of electromagnetic waves, including scattering, diffraction, and interaction with continuous media; and applications pertaining to antennas and propagation, such as remote sensing, applied optics, and millimeter and submillimeter wave techniques
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信