Multifunctional Reconfigurable Intelligent Surface for Wideband Beamforming and Frequency-and-Spatial-Diverse Microwave Sensing

IF 4.6 1区 计算机科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Baiyang Liu;Qingfeng Zhang;Hang Wong
{"title":"Multifunctional Reconfigurable Intelligent Surface for Wideband Beamforming and Frequency-and-Spatial-Diverse Microwave Sensing","authors":"Baiyang Liu;Qingfeng Zhang;Hang Wong","doi":"10.1109/TAP.2024.3519781","DOIUrl":null,"url":null,"abstract":"Reconfigurable intelligent surface (RIS), known for their wave manipulation capabilities, are emerging as key technologies, especially in communication and sensing. In this article, we introduce a multifunctional RIS that is noteworthy for its substantial relative impedance bandwidth coverage of 41.3%, offering both frequency and spatial diversities for wideband wide-angle beamforming and object sensing. The proposed multifunctional RIS has been fabricated and measured. Moreover, the RIS utilizes wideband wide-angle beamforming and frequency-and-spatial-diverse technology to demonstrate dual functions: enhancing broadband wireless signals using quadrature amplitude modulation (QAM) and detecting passive objects. Regarding wireless signal enhancement, the RIS boosts signals by an average of 8 dB compared with a metal plate within the wideband frequency range of 15–21 GHz. In terms of frequency-and-spatial-diverse sensing, the proposed RIS is able to sense objects against a background. By introducing joint frequency and spatial diversity, the proposed RIS can further increase capacity in both wireless communication and sensing systems. The multiple functions make the RIS and highly relevant for sixth-generation (6G) communication systems and integrated sensing and communication (ISAC) applications.","PeriodicalId":13102,"journal":{"name":"IEEE Transactions on Antennas and Propagation","volume":"73 2","pages":"1135-1148"},"PeriodicalIF":4.6000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Antennas and Propagation","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10815022/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Reconfigurable intelligent surface (RIS), known for their wave manipulation capabilities, are emerging as key technologies, especially in communication and sensing. In this article, we introduce a multifunctional RIS that is noteworthy for its substantial relative impedance bandwidth coverage of 41.3%, offering both frequency and spatial diversities for wideband wide-angle beamforming and object sensing. The proposed multifunctional RIS has been fabricated and measured. Moreover, the RIS utilizes wideband wide-angle beamforming and frequency-and-spatial-diverse technology to demonstrate dual functions: enhancing broadband wireless signals using quadrature amplitude modulation (QAM) and detecting passive objects. Regarding wireless signal enhancement, the RIS boosts signals by an average of 8 dB compared with a metal plate within the wideband frequency range of 15–21 GHz. In terms of frequency-and-spatial-diverse sensing, the proposed RIS is able to sense objects against a background. By introducing joint frequency and spatial diversity, the proposed RIS can further increase capacity in both wireless communication and sensing systems. The multiple functions make the RIS and highly relevant for sixth-generation (6G) communication systems and integrated sensing and communication (ISAC) applications.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
10.40
自引率
28.10%
发文量
968
审稿时长
4.7 months
期刊介绍: IEEE Transactions on Antennas and Propagation includes theoretical and experimental advances in antennas, including design and development, and in the propagation of electromagnetic waves, including scattering, diffraction, and interaction with continuous media; and applications pertaining to antennas and propagation, such as remote sensing, applied optics, and millimeter and submillimeter wave techniques
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信