{"title":"Broadband and Wide-Incident-Angle Anomalous Reflection Multifunctional Metagrating","authors":"Wenyu Gao;Yahong Liu;Xin Zhou;Lijun Ding;Xiaoyong Yang;Peng Li;Jintao Zhang;Kun Song;Zhenfei Li;Xiaopeng Zhao","doi":"10.1109/LAWP.2024.3502165","DOIUrl":null,"url":null,"abstract":"Anomalous reflection efficiency is limited in the case of large deflection angles. In this letter, we design a metagrating that can maintain high efficiency in an incident angle range of 10°–60° with a fractional bandwidth up to 55.3%. By adjusting the period of the metagrating, only the 0th and −1st-diffraction orders exist under oblique incidence. The unit cell of the metagrating consists of two metal rings, which exhibit a π phase difference and can shut down the 0th-order diffraction mode. Therefore, only the −1st-order anomalous reflection can be achieved under oblique incidence conditions. Simulated and experimental results demonstrate that the proposed metagrating can achieve anomalous reflection at broadband and large angles. Furthermore, a multifunctional metagrating can be implemented by redesigning the metal rings, which have various functions of anomalous reflection, polarization selection, and multibeam generation.","PeriodicalId":51059,"journal":{"name":"IEEE Antennas and Wireless Propagation Letters","volume":"24 2","pages":"419-423"},"PeriodicalIF":3.7000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Antennas and Wireless Propagation Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10758298/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Anomalous reflection efficiency is limited in the case of large deflection angles. In this letter, we design a metagrating that can maintain high efficiency in an incident angle range of 10°–60° with a fractional bandwidth up to 55.3%. By adjusting the period of the metagrating, only the 0th and −1st-diffraction orders exist under oblique incidence. The unit cell of the metagrating consists of two metal rings, which exhibit a π phase difference and can shut down the 0th-order diffraction mode. Therefore, only the −1st-order anomalous reflection can be achieved under oblique incidence conditions. Simulated and experimental results demonstrate that the proposed metagrating can achieve anomalous reflection at broadband and large angles. Furthermore, a multifunctional metagrating can be implemented by redesigning the metal rings, which have various functions of anomalous reflection, polarization selection, and multibeam generation.
期刊介绍:
IEEE Antennas and Wireless Propagation Letters (AWP Letters) is devoted to the rapid electronic publication of short manuscripts in the technical areas of Antennas and Wireless Propagation. These are areas of competence for the IEEE Antennas and Propagation Society (AP-S). AWPL aims to be one of the "fastest" journals among IEEE publications. This means that for papers that are eventually accepted, it is intended that an author may expect his or her paper to appear in IEEE Xplore, on average, around two months after submission.