A Tuning Method for the Supplementary Voltage Controller of Dual-Side Grid Forming Converters in Distributed Storage Systems

IF 5.2 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Angel Perez-Basante;Asier Gil de Muro;Ander Ordono;Salvador Ceballos;Eneko Unamuno;Jon Andoni Barrena
{"title":"A Tuning Method for the Supplementary Voltage Controller of Dual-Side Grid Forming Converters in Distributed Storage Systems","authors":"Angel Perez-Basante;Asier Gil de Muro;Ander Ordono;Salvador Ceballos;Eneko Unamuno;Jon Andoni Barrena","doi":"10.1109/OJIES.2025.3533022","DOIUrl":null,"url":null,"abstract":"Utility-scale battery energy storage systems (BESSs) are currently being used to provide auxiliary services, such as frequency regulation, peak shaving, or grid balancing, among others. Hybrid ac/dc distribution grids where the BESS systems are connected in the dc side and the dc/ac interface is implemented through a grid forming (GF) converter are currently researched. These solutions combine the benefits given by the dc distribution and the possibility to provide emulated inertia and damping to the system through the use of GF control techniques. This article presents a novel tuning method, based on small signal analysis, for the configuration parameters of a dual-side GF controller. It aims to minimize the dynamic performance difference between the dual-side and ideal GF controllers, thus ensuring that the dual-side GF provides the expected support to the grid in terms of inertia, damping and primary response, while simultaneously controlling the dc voltage. This is achieved through the optimum tuning of the supplementary dc voltage regulator embedded in the dual-side GF controller. Real-time estimation of the optimum controller gains by making use of an artificial neural network is proposed. Simulation and experimental results are presented to validate the method.","PeriodicalId":52675,"journal":{"name":"IEEE Open Journal of the Industrial Electronics Society","volume":"6 ","pages":"202-215"},"PeriodicalIF":5.2000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10850770","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of the Industrial Electronics Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10850770/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Utility-scale battery energy storage systems (BESSs) are currently being used to provide auxiliary services, such as frequency regulation, peak shaving, or grid balancing, among others. Hybrid ac/dc distribution grids where the BESS systems are connected in the dc side and the dc/ac interface is implemented through a grid forming (GF) converter are currently researched. These solutions combine the benefits given by the dc distribution and the possibility to provide emulated inertia and damping to the system through the use of GF control techniques. This article presents a novel tuning method, based on small signal analysis, for the configuration parameters of a dual-side GF controller. It aims to minimize the dynamic performance difference between the dual-side and ideal GF controllers, thus ensuring that the dual-side GF provides the expected support to the grid in terms of inertia, damping and primary response, while simultaneously controlling the dc voltage. This is achieved through the optimum tuning of the supplementary dc voltage regulator embedded in the dual-side GF controller. Real-time estimation of the optimum controller gains by making use of an artificial neural network is proposed. Simulation and experimental results are presented to validate the method.
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Open Journal of the Industrial Electronics Society
IEEE Open Journal of the Industrial Electronics Society ENGINEERING, ELECTRICAL & ELECTRONIC-
CiteScore
10.80
自引率
2.40%
发文量
33
审稿时长
12 weeks
期刊介绍: The IEEE Open Journal of the Industrial Electronics Society is dedicated to advancing information-intensive, knowledge-based automation, and digitalization, aiming to enhance various industrial and infrastructural ecosystems including energy, mobility, health, and home/building infrastructure. Encompassing a range of techniques leveraging data and information acquisition, analysis, manipulation, and distribution, the journal strives to achieve greater flexibility, efficiency, effectiveness, reliability, and security within digitalized and networked environments. Our scope provides a platform for discourse and dissemination of the latest developments in numerous research and innovation areas. These include electrical components and systems, smart grids, industrial cyber-physical systems, motion control, robotics and mechatronics, sensors and actuators, factory and building communication and automation, industrial digitalization, flexible and reconfigurable manufacturing, assistant systems, industrial applications of artificial intelligence and data science, as well as the implementation of machine learning, artificial neural networks, and fuzzy logic. Additionally, we explore human factors in digitalized and networked ecosystems. Join us in exploring and shaping the future of industrial electronics and digitalization.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信