Design of a Savitzky-Golay Filter-Based vEMG-FES System

IF 4.8 2区 医学 Q2 ENGINEERING, BIOMEDICAL
Ruikai Cao;Yixuan Sheng;Anqin Dong;Honghai Liu
{"title":"Design of a Savitzky-Golay Filter-Based vEMG-FES System","authors":"Ruikai Cao;Yixuan Sheng;Anqin Dong;Honghai Liu","doi":"10.1109/TNSRE.2025.3535639","DOIUrl":null,"url":null,"abstract":"It is evident that voluntary effort plays a crucial role in electrical stimulation rehabilitation, facilitating neuroplasticity enhancement in patients with neurological disorders. In this paper, we present a multichannel system designed for simultaneous functional electrical stimulation (FES) and volitional EMG (vEMG) acquisition using shared electrodes. The system employs hardware blanking with electrodes shorting to suppress stimulation artifacts and accelerate residual charge dissipation. Additionally, we adapt the Savitzky-Golay filter to extract high-quality, real-time vEMG from FES-contaminated signals, with the optimal filter parameters for different stimulation and blanking periods determined using a genetic algorithm and semi-synthesized signals. Simulation and experimental results confirm that the proposed system ensures robust and high-quality vEMG acquisition, even under varying parameters and across different individuals. In summary, this work advances the development of closed-loop rehabilitation applications and enables further investigation of neuromuscular characteristics under FES.","PeriodicalId":13419,"journal":{"name":"IEEE Transactions on Neural Systems and Rehabilitation Engineering","volume":"33 ","pages":"610-619"},"PeriodicalIF":4.8000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10856274","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Neural Systems and Rehabilitation Engineering","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10856274/","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

It is evident that voluntary effort plays a crucial role in electrical stimulation rehabilitation, facilitating neuroplasticity enhancement in patients with neurological disorders. In this paper, we present a multichannel system designed for simultaneous functional electrical stimulation (FES) and volitional EMG (vEMG) acquisition using shared electrodes. The system employs hardware blanking with electrodes shorting to suppress stimulation artifacts and accelerate residual charge dissipation. Additionally, we adapt the Savitzky-Golay filter to extract high-quality, real-time vEMG from FES-contaminated signals, with the optimal filter parameters for different stimulation and blanking periods determined using a genetic algorithm and semi-synthesized signals. Simulation and experimental results confirm that the proposed system ensures robust and high-quality vEMG acquisition, even under varying parameters and across different individuals. In summary, this work advances the development of closed-loop rehabilitation applications and enables further investigation of neuromuscular characteristics under FES.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.60
自引率
8.20%
发文量
479
审稿时长
6-12 weeks
期刊介绍: Rehabilitative and neural aspects of biomedical engineering, including functional electrical stimulation, acoustic dynamics, human performance measurement and analysis, nerve stimulation, electromyography, motor control and stimulation; and hardware and software applications for rehabilitation engineering and assistive devices.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信