Joarder Jafor Sadique;Imtiaz Nasim;Ahmed S. Ibrahim
{"title":"Link Scheduling in Satellite Networks via Machine Learning Over Riemannian Manifolds","authors":"Joarder Jafor Sadique;Imtiaz Nasim;Ahmed S. Ibrahim","doi":"10.1109/OJCOMS.2025.3533296","DOIUrl":null,"url":null,"abstract":"Low Earth Orbit (LEO) satellites play a crucial role in enhancing global connectivity, serving a complementary solution to existing terrestrial systems. In wireless networks, scheduling is a vital process that allocates time-frequency resources to users for interference management. However, LEO satellite networks face significant challenges in scheduling their links towards ground users due to the satellites’ mobility and overlapping coverage. This paper addresses the dynamic link scheduling problem in LEO satellite networks by considering spatio-temporal correlations introduced by the satellites’ movements. The first step in the proposed solution involves modeling the network over Riemannian manifolds, thanks to their representation as symmetric positive definite matrices. We introduce two machine learning (ML)-based link scheduling techniques that model the dynamic evolution of satellite positions and link conditions over time and space. To accurately predict satellite link states, we present a recurrent neural network (RNN) over Riemannian manifolds, which captures spatio-temporal characteristics over time. Furthermore, we introduce a separate model, the convolutional neural network (CNN) over Riemannian manifolds, which captures geometric relationships between satellites and users by extracting spatial features from the network topology across all links. Simulation results demonstrate that both RNN and CNN over Riemannian manifolds deliver comparable performance to the fractional programming-based link scheduling (FPLinQ) benchmark. Remarkably, unlike other ML-based models that require extensive training data, both models only need 30 training samples to achieve over 99% of the sum rate while maintaining similar computational complexity relative to the benchmark.","PeriodicalId":33803,"journal":{"name":"IEEE Open Journal of the Communications Society","volume":"6 ","pages":"972-985"},"PeriodicalIF":6.3000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10851312","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of the Communications Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10851312/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Low Earth Orbit (LEO) satellites play a crucial role in enhancing global connectivity, serving a complementary solution to existing terrestrial systems. In wireless networks, scheduling is a vital process that allocates time-frequency resources to users for interference management. However, LEO satellite networks face significant challenges in scheduling their links towards ground users due to the satellites’ mobility and overlapping coverage. This paper addresses the dynamic link scheduling problem in LEO satellite networks by considering spatio-temporal correlations introduced by the satellites’ movements. The first step in the proposed solution involves modeling the network over Riemannian manifolds, thanks to their representation as symmetric positive definite matrices. We introduce two machine learning (ML)-based link scheduling techniques that model the dynamic evolution of satellite positions and link conditions over time and space. To accurately predict satellite link states, we present a recurrent neural network (RNN) over Riemannian manifolds, which captures spatio-temporal characteristics over time. Furthermore, we introduce a separate model, the convolutional neural network (CNN) over Riemannian manifolds, which captures geometric relationships between satellites and users by extracting spatial features from the network topology across all links. Simulation results demonstrate that both RNN and CNN over Riemannian manifolds deliver comparable performance to the fractional programming-based link scheduling (FPLinQ) benchmark. Remarkably, unlike other ML-based models that require extensive training data, both models only need 30 training samples to achieve over 99% of the sum rate while maintaining similar computational complexity relative to the benchmark.
期刊介绍:
The IEEE Open Journal of the Communications Society (OJ-COMS) is an open access, all-electronic journal that publishes original high-quality manuscripts on advances in the state of the art of telecommunications systems and networks. The papers in IEEE OJ-COMS are included in Scopus. Submissions reporting new theoretical findings (including novel methods, concepts, and studies) and practical contributions (including experiments and development of prototypes) are welcome. Additionally, survey and tutorial articles are considered. The IEEE OJCOMS received its debut impact factor of 7.9 according to the Journal Citation Reports (JCR) 2023.
The IEEE Open Journal of the Communications Society covers science, technology, applications and standards for information organization, collection and transfer using electronic, optical and wireless channels and networks. Some specific areas covered include:
Systems and network architecture, control and management
Protocols, software, and middleware
Quality of service, reliability, and security
Modulation, detection, coding, and signaling
Switching and routing
Mobile and portable communications
Terminals and other end-user devices
Networks for content distribution and distributed computing
Communications-based distributed resources control.