Chuanshun Zhi , Xiaonong Hu , Zhuo Zhang , Baonan He , Jing Bai , Xiancang Wu , Hui Mu , Wenbo Chang , Fan Yang , Qi Qiu , Yuzheng Wang
{"title":"Bacterial and archaeal community successions in high-salinity groundwater and their potential impact on arsenic cycling","authors":"Chuanshun Zhi , Xiaonong Hu , Zhuo Zhang , Baonan He , Jing Bai , Xiancang Wu , Hui Mu , Wenbo Chang , Fan Yang , Qi Qiu , Yuzheng Wang","doi":"10.1016/j.jhydrol.2025.132742","DOIUrl":null,"url":null,"abstract":"<div><div>Groundwater arsenic (As) contamination is a global issue involving complex biogeochemical processes. However, the arsenic cycling in high-salinity groundwater environments remain poorly understood. In this study, we used hydrogeochemical and microbial techniques to investigate the impact of salinity on bacterial and archaeal community structures and their functional evolution in the Yellow River Delta (YRD), China, and to explore how these dynamics influence arsenic enrichment. The results showed that bacterial richness and evenness decreased significantly with increasing salinity, especially in samples with TDS above 10 g/L, and the decrease was even more pronounced compared to archaea. Bacterial communities were dominated by <em>Proteobacteria</em> and <em>Omnitrophica</em>, while archaeal communities were predominantly composed of <em>Halobacteria</em>. Microbial communities actively mediate As-Fe-C-N-S redox cycling, exhibiting distinct cycling characteristics under varying salinity conditions. Microbe-mediated processes such as organic matter degradation, sulfate reduction, iron reduction, methanotrophy, and methanogenesis potentially contributed to As mobilization in low-salinity groundwater. In contrast, in high-salinity groundwater, sulfur respiration, iron respiration, and nitrate respiration were intensified, while methane oxidation and methanogenesis were inhibited, significantly affecting As cycling. This study highlights the critical role of salinity in shaping microbial community dynamics and their influence on arsenic biogeochemical cycling in the YRD aquifers, providing new insights into As mobilization in high-salinity groundwater.</div></div>","PeriodicalId":362,"journal":{"name":"Journal of Hydrology","volume":"653 ","pages":"Article 132742"},"PeriodicalIF":5.9000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydrology","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022169425000800","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
Groundwater arsenic (As) contamination is a global issue involving complex biogeochemical processes. However, the arsenic cycling in high-salinity groundwater environments remain poorly understood. In this study, we used hydrogeochemical and microbial techniques to investigate the impact of salinity on bacterial and archaeal community structures and their functional evolution in the Yellow River Delta (YRD), China, and to explore how these dynamics influence arsenic enrichment. The results showed that bacterial richness and evenness decreased significantly with increasing salinity, especially in samples with TDS above 10 g/L, and the decrease was even more pronounced compared to archaea. Bacterial communities were dominated by Proteobacteria and Omnitrophica, while archaeal communities were predominantly composed of Halobacteria. Microbial communities actively mediate As-Fe-C-N-S redox cycling, exhibiting distinct cycling characteristics under varying salinity conditions. Microbe-mediated processes such as organic matter degradation, sulfate reduction, iron reduction, methanotrophy, and methanogenesis potentially contributed to As mobilization in low-salinity groundwater. In contrast, in high-salinity groundwater, sulfur respiration, iron respiration, and nitrate respiration were intensified, while methane oxidation and methanogenesis were inhibited, significantly affecting As cycling. This study highlights the critical role of salinity in shaping microbial community dynamics and their influence on arsenic biogeochemical cycling in the YRD aquifers, providing new insights into As mobilization in high-salinity groundwater.
期刊介绍:
The Journal of Hydrology publishes original research papers and comprehensive reviews in all the subfields of the hydrological sciences including water based management and policy issues that impact on economics and society. These comprise, but are not limited to the physical, chemical, biogeochemical, stochastic and systems aspects of surface and groundwater hydrology, hydrometeorology and hydrogeology. Relevant topics incorporating the insights and methodologies of disciplines such as climatology, water resource systems, hydraulics, agrohydrology, geomorphology, soil science, instrumentation and remote sensing, civil and environmental engineering are included. Social science perspectives on hydrological problems such as resource and ecological economics, environmental sociology, psychology and behavioural science, management and policy analysis are also invited. Multi-and interdisciplinary analyses of hydrological problems are within scope. The science published in the Journal of Hydrology is relevant to catchment scales rather than exclusively to a local scale or site.