Effect of peroxisome proliferation and salt stress on enhancing the potential of microalgae as biodiesel feedstock

IF 16.3 1区 工程技术 Q1 ENERGY & FUELS
Wei Wang , Yunzhuan Xue , Bingze Li , Xiajule Sheng , Yongxin Shi , Qiqi Zou , Jing Li , Tong Li , Xianhua Wang , Jiao Xue
{"title":"Effect of peroxisome proliferation and salt stress on enhancing the potential of microalgae as biodiesel feedstock","authors":"Wei Wang ,&nbsp;Yunzhuan Xue ,&nbsp;Bingze Li ,&nbsp;Xiajule Sheng ,&nbsp;Yongxin Shi ,&nbsp;Qiqi Zou ,&nbsp;Jing Li ,&nbsp;Tong Li ,&nbsp;Xianhua Wang ,&nbsp;Jiao Xue","doi":"10.1016/j.rser.2025.115398","DOIUrl":null,"url":null,"abstract":"<div><div>Microalgae are widely recognized as leading producers of third-generation biofuels. However, the industrialization of microalgae biodiesel faces significant challenges, primarily concerning efficiency and cost. A key bottleneck is the scarcity of energy-efficient, high-yielding, and resilient algal strains. To address this issue, this study investigated the role of the pivotal gene, Peroxin 11 (PEX11), involved in the formation of peroxisomes oxidative organelles ubiquitously present and associated with lipid metabolism and stress response. This study aimed to uncover the potential functions of PEX11 in lipid accumulation and salt stress response in <em>Tetradesmus obliquus</em>, utilizing PEX11-1 overexpression strains. Consistent with most reports, PEX11-1 was found to be localized in peroxisomes and potentially contributed to peroxisome proliferation in microalgae. The results revealed that overexpression of PEX11-1 positively impacted lipid accumulation, facilitated by the regulation of reactive oxygen species levels, the expression of lipid synthesis-related genes, and the redistribution of carbon precursors. The neutral lipid content in PEX11-1 overexpressing algal strains increased 2–3 times, with lipid yield escalating to 284.4 mg L<sup>−1</sup> and cellular biomass reaching 902.3 mg L<sup>−1</sup>. Notably, under salt stress, the neutral lipid content per unit cell in the transformed line was nearly 4-fold higher than that of the WT. In addition, the overexpression of PEX11-1 hindered the involvement of lipid droplets in membrane remodeling and cell division, thereby diminishing the salt stress tolerance of <em>T. obliquus</em>. In conclusion, these findings emphasize the crucial role of PEX11 in microalgal lipid metabolism and offer insights into creating lipid-producing algal strains through genetic engineering.</div></div>","PeriodicalId":418,"journal":{"name":"Renewable and Sustainable Energy Reviews","volume":"212 ","pages":"Article 115398"},"PeriodicalIF":16.3000,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Renewable and Sustainable Energy Reviews","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1364032125000711","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Microalgae are widely recognized as leading producers of third-generation biofuels. However, the industrialization of microalgae biodiesel faces significant challenges, primarily concerning efficiency and cost. A key bottleneck is the scarcity of energy-efficient, high-yielding, and resilient algal strains. To address this issue, this study investigated the role of the pivotal gene, Peroxin 11 (PEX11), involved in the formation of peroxisomes oxidative organelles ubiquitously present and associated with lipid metabolism and stress response. This study aimed to uncover the potential functions of PEX11 in lipid accumulation and salt stress response in Tetradesmus obliquus, utilizing PEX11-1 overexpression strains. Consistent with most reports, PEX11-1 was found to be localized in peroxisomes and potentially contributed to peroxisome proliferation in microalgae. The results revealed that overexpression of PEX11-1 positively impacted lipid accumulation, facilitated by the regulation of reactive oxygen species levels, the expression of lipid synthesis-related genes, and the redistribution of carbon precursors. The neutral lipid content in PEX11-1 overexpressing algal strains increased 2–3 times, with lipid yield escalating to 284.4 mg L−1 and cellular biomass reaching 902.3 mg L−1. Notably, under salt stress, the neutral lipid content per unit cell in the transformed line was nearly 4-fold higher than that of the WT. In addition, the overexpression of PEX11-1 hindered the involvement of lipid droplets in membrane remodeling and cell division, thereby diminishing the salt stress tolerance of T. obliquus. In conclusion, these findings emphasize the crucial role of PEX11 in microalgal lipid metabolism and offer insights into creating lipid-producing algal strains through genetic engineering.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Renewable and Sustainable Energy Reviews
Renewable and Sustainable Energy Reviews 工程技术-能源与燃料
CiteScore
31.20
自引率
5.70%
发文量
1055
审稿时长
62 days
期刊介绍: The mission of Renewable and Sustainable Energy Reviews is to disseminate the most compelling and pertinent critical insights in renewable and sustainable energy, fostering collaboration among the research community, private sector, and policy and decision makers. The journal aims to exchange challenges, solutions, innovative concepts, and technologies, contributing to sustainable development, the transition to a low-carbon future, and the attainment of emissions targets outlined by the United Nations Framework Convention on Climate Change. Renewable and Sustainable Energy Reviews publishes a diverse range of content, including review papers, original research, case studies, and analyses of new technologies, all featuring a substantial review component such as critique, comparison, or analysis. Introducing a distinctive paper type, Expert Insights, the journal presents commissioned mini-reviews authored by field leaders, addressing topics of significant interest. Case studies undergo consideration only if they showcase the work's applicability to other regions or contribute valuable insights to the broader field of renewable and sustainable energy. Notably, a bibliographic or literature review lacking critical analysis is deemed unsuitable for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信