D.A. Toribio-Ramirez , B.C.C. van der Zwaan , R.J. Detz , A. Faaij
{"title":"A review of methods to analyze technological change in industry","authors":"D.A. Toribio-Ramirez , B.C.C. van der Zwaan , R.J. Detz , A. Faaij","doi":"10.1016/j.rser.2024.115310","DOIUrl":null,"url":null,"abstract":"<div><div>There is an urgency to accelerate the innovation, development, and deployment of low-carbon industrial processes. Reviewing existing insights into how to achieve rapid technological change may be useful to assist this acceleration. Literature offers a set of approaches to model learning-by-doing and cost reductions, such as the learning curve methodology. However, it is debated if it can accurately describe and project cost reductions for low-carbon industrial processes. The goal of this work is threefold. First, to give more insight into what factors may explain the speed of innovation and technological change of low-carbon energy technologies. Second, to review existing approaches to model innovation and technological change of energy technologies and industrial processes. Third, to devise a framework to study technological learning of industrial processes. This work presents three main outcomes. First, we report more than 30 barriers and drivers of technological change. Second, we present a list of learning curve models and complementary methodologies to represent and/or explain these barriers and drivers. Third, we propose a framework to model technological learning of low-carbon industrial processes.</div></div>","PeriodicalId":418,"journal":{"name":"Renewable and Sustainable Energy Reviews","volume":"212 ","pages":"Article 115310"},"PeriodicalIF":16.3000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Renewable and Sustainable Energy Reviews","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1364032124010360","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
There is an urgency to accelerate the innovation, development, and deployment of low-carbon industrial processes. Reviewing existing insights into how to achieve rapid technological change may be useful to assist this acceleration. Literature offers a set of approaches to model learning-by-doing and cost reductions, such as the learning curve methodology. However, it is debated if it can accurately describe and project cost reductions for low-carbon industrial processes. The goal of this work is threefold. First, to give more insight into what factors may explain the speed of innovation and technological change of low-carbon energy technologies. Second, to review existing approaches to model innovation and technological change of energy technologies and industrial processes. Third, to devise a framework to study technological learning of industrial processes. This work presents three main outcomes. First, we report more than 30 barriers and drivers of technological change. Second, we present a list of learning curve models and complementary methodologies to represent and/or explain these barriers and drivers. Third, we propose a framework to model technological learning of low-carbon industrial processes.
期刊介绍:
The mission of Renewable and Sustainable Energy Reviews is to disseminate the most compelling and pertinent critical insights in renewable and sustainable energy, fostering collaboration among the research community, private sector, and policy and decision makers. The journal aims to exchange challenges, solutions, innovative concepts, and technologies, contributing to sustainable development, the transition to a low-carbon future, and the attainment of emissions targets outlined by the United Nations Framework Convention on Climate Change.
Renewable and Sustainable Energy Reviews publishes a diverse range of content, including review papers, original research, case studies, and analyses of new technologies, all featuring a substantial review component such as critique, comparison, or analysis. Introducing a distinctive paper type, Expert Insights, the journal presents commissioned mini-reviews authored by field leaders, addressing topics of significant interest. Case studies undergo consideration only if they showcase the work's applicability to other regions or contribute valuable insights to the broader field of renewable and sustainable energy. Notably, a bibliographic or literature review lacking critical analysis is deemed unsuitable for publication.