Yutao Sun , Xingxing Li , Zhengfu Guo , Wenbin Zhao , Yue Zhang , Peizhan Li , Xiaoyong Zhao , Yaru Li , Bin Hong
{"title":"Microbial characteristics and CO2 diffuse emission in the Mt. Changbai volcanic field, northeast China","authors":"Yutao Sun , Xingxing Li , Zhengfu Guo , Wenbin Zhao , Yue Zhang , Peizhan Li , Xiaoyong Zhao , Yaru Li , Bin Hong","doi":"10.1016/j.jseaes.2025.106513","DOIUrl":null,"url":null,"abstract":"<div><div>Volcanism is one of the principal geologic processes that drive the transferring of carbon between interior and surface reservoirs, playing a crucial role in climate change and global warming. Clarifying the relationship between the characteristics of microorganisms and geological degassing of dormant volcanoes is one of the most important and fundamental tasks. In this study, the microbial characteristics (including bacteria, archaea, and fungi) of cold and hot springs and soil in the Tianchi volcano (TCV), northeastern China were comprehensively studied. Results of this study indicated that the microbial diversities of water environments (hot and cold springs) exhibited distinct characteristics compared to that of the soil, inferring that the microbial-driven carbon cycle in wet and dry degassing systems in the TCV are different. The CO<sub>2</sub> diffuse emission flux from the soil through micro-seepage decreased from the crater to the peripheral area, which broadly coincided with the diversity and richness of the microbial community. A moderate but significant correlation was found between soil CO<sub>2</sub> flux and microbial diversity of bacteria, archaea and fungi, differing from that observed in extreme volcanic environments and non-volcanic fields. This study is the first to report the correlation between microbial community diversity and soil CO<sub>2</sub> flux in a non-extreme volcanic environment. The findings reveal the diversity of microorganisms involved in the carbon cycle, which may provide a foundation for further in-depth exploration of the intrinsic microbial mechanisms in the carbon cycle.</div></div>","PeriodicalId":50253,"journal":{"name":"Journal of Asian Earth Sciences","volume":"281 ","pages":"Article 106513"},"PeriodicalIF":2.7000,"publicationDate":"2025-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Asian Earth Sciences","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1367912025000288","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Volcanism is one of the principal geologic processes that drive the transferring of carbon between interior and surface reservoirs, playing a crucial role in climate change and global warming. Clarifying the relationship between the characteristics of microorganisms and geological degassing of dormant volcanoes is one of the most important and fundamental tasks. In this study, the microbial characteristics (including bacteria, archaea, and fungi) of cold and hot springs and soil in the Tianchi volcano (TCV), northeastern China were comprehensively studied. Results of this study indicated that the microbial diversities of water environments (hot and cold springs) exhibited distinct characteristics compared to that of the soil, inferring that the microbial-driven carbon cycle in wet and dry degassing systems in the TCV are different. The CO2 diffuse emission flux from the soil through micro-seepage decreased from the crater to the peripheral area, which broadly coincided with the diversity and richness of the microbial community. A moderate but significant correlation was found between soil CO2 flux and microbial diversity of bacteria, archaea and fungi, differing from that observed in extreme volcanic environments and non-volcanic fields. This study is the first to report the correlation between microbial community diversity and soil CO2 flux in a non-extreme volcanic environment. The findings reveal the diversity of microorganisms involved in the carbon cycle, which may provide a foundation for further in-depth exploration of the intrinsic microbial mechanisms in the carbon cycle.
期刊介绍:
Journal of Asian Earth Sciences has an open access mirror journal Journal of Asian Earth Sciences: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review.
The Journal of Asian Earth Sciences is an international interdisciplinary journal devoted to all aspects of research related to the solid Earth Sciences of Asia. The Journal publishes high quality, peer-reviewed scientific papers on the regional geology, tectonics, geochemistry and geophysics of Asia. It will be devoted primarily to research papers but short communications relating to new developments of broad interest, reviews and book reviews will also be included. Papers must have international appeal and should present work of more than local significance.
The scope includes deep processes of the Asian continent and its adjacent oceans; seismology and earthquakes; orogeny, magmatism, metamorphism and volcanism; growth, deformation and destruction of the Asian crust; crust-mantle interaction; evolution of life (early life, biostratigraphy, biogeography and mass-extinction); fluids, fluxes and reservoirs of mineral and energy resources; surface processes (weathering, erosion, transport and deposition of sediments) and resulting geomorphology; and the response of the Earth to global climate change as viewed within the Asian continent and surrounding oceans.