ZEB1-AS1 as a TRPML1 Inhibitor to Cause Lysosome Dysfunction and Cardiac Damage in Aged Mice

IF 10.1 1区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY
Heng Liu , Haiying Zhang , Han Lou , Jennifer Wang , Shengxin Hao , Hui Chen , Chen Chen , Lei Wang , Huimin Li , Ziyu Meng , Wenjie Zhao , Tong Zhao , Yuan Lin , Zhimin Du , Xin Liu , Baofeng Yang , Yong Zhang
{"title":"ZEB1-AS1 as a TRPML1 Inhibitor to Cause Lysosome Dysfunction and Cardiac Damage in Aged Mice","authors":"Heng Liu ,&nbsp;Haiying Zhang ,&nbsp;Han Lou ,&nbsp;Jennifer Wang ,&nbsp;Shengxin Hao ,&nbsp;Hui Chen ,&nbsp;Chen Chen ,&nbsp;Lei Wang ,&nbsp;Huimin Li ,&nbsp;Ziyu Meng ,&nbsp;Wenjie Zhao ,&nbsp;Tong Zhao ,&nbsp;Yuan Lin ,&nbsp;Zhimin Du ,&nbsp;Xin Liu ,&nbsp;Baofeng Yang ,&nbsp;Yong Zhang","doi":"10.1016/j.eng.2024.09.020","DOIUrl":null,"url":null,"abstract":"<div><div>The prevalence of cardiovascular diseases (CVDs) has increased markedly as the world population has aged. Long non-coding RNAs (lncRNAs) have been reported as novel regulators in diverse pathophysiological conditions. Here, we performed RNA sequencing (RNA-seq) and observed that the lncRNA Zeb1os1 (zinc finger E-box binding homeobox 1, opposite strand 1), which is known as ZEB1-AS1 (zinc finger E-box binding homeobox 1 antisense 1) in humans, was upregulated in the aged mice hearts, senescent cardiomyocytes, and human blood from elderly individuals. The human blood ZEB1-AS1 level was positively relevant to human age but negatively relevant to peak E to peak A (E/A). Silencing Zeb1os1 ameliorated diastolic dysfunction and cardiac senescence in aged mice. On the other hand, Zeb1os1 overexpression triggered cardiac dysfunction resembling that observed in aged mice. Mechanistically, we provide compelling evidence that Zeb1os1 interacts with the transient receptor potential mucolipin 1 (TRPML1) for ubiquitination (UB)-mediated degradation. This process inhibits lysosomal Ca<sup>2+</sup> efflux, impairing lysosome function. In addition, the functional domain of Zeb1os1, which contains the key nucleotides responsible for the pro-senescence property of full-length Zeb1os1 in cardiomyocytes. Together, these data suggest that Zeb1os1 is a potential target for ameliorating lysosomal dysfunction and aging-related cardiac impairment.</div></div>","PeriodicalId":11783,"journal":{"name":"Engineering","volume":"43 ","pages":"Pages 183-200"},"PeriodicalIF":10.1000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095809924005897","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The prevalence of cardiovascular diseases (CVDs) has increased markedly as the world population has aged. Long non-coding RNAs (lncRNAs) have been reported as novel regulators in diverse pathophysiological conditions. Here, we performed RNA sequencing (RNA-seq) and observed that the lncRNA Zeb1os1 (zinc finger E-box binding homeobox 1, opposite strand 1), which is known as ZEB1-AS1 (zinc finger E-box binding homeobox 1 antisense 1) in humans, was upregulated in the aged mice hearts, senescent cardiomyocytes, and human blood from elderly individuals. The human blood ZEB1-AS1 level was positively relevant to human age but negatively relevant to peak E to peak A (E/A). Silencing Zeb1os1 ameliorated diastolic dysfunction and cardiac senescence in aged mice. On the other hand, Zeb1os1 overexpression triggered cardiac dysfunction resembling that observed in aged mice. Mechanistically, we provide compelling evidence that Zeb1os1 interacts with the transient receptor potential mucolipin 1 (TRPML1) for ubiquitination (UB)-mediated degradation. This process inhibits lysosomal Ca2+ efflux, impairing lysosome function. In addition, the functional domain of Zeb1os1, which contains the key nucleotides responsible for the pro-senescence property of full-length Zeb1os1 in cardiomyocytes. Together, these data suggest that Zeb1os1 is a potential target for ameliorating lysosomal dysfunction and aging-related cardiac impairment.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Engineering
Engineering Environmental Science-Environmental Engineering
自引率
1.60%
发文量
335
审稿时长
35 days
期刊介绍: Engineering, an international open-access journal initiated by the Chinese Academy of Engineering (CAE) in 2015, serves as a distinguished platform for disseminating cutting-edge advancements in engineering R&D, sharing major research outputs, and highlighting key achievements worldwide. The journal's objectives encompass reporting progress in engineering science, fostering discussions on hot topics, addressing areas of interest, challenges, and prospects in engineering development, while considering human and environmental well-being and ethics in engineering. It aims to inspire breakthroughs and innovations with profound economic and social significance, propelling them to advanced international standards and transforming them into a new productive force. Ultimately, this endeavor seeks to bring about positive changes globally, benefit humanity, and shape a new future.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信