Xiang Zhao , Wei Xue , Weixiao Ding , Yalei Qiao , Xuehui Chu , Yudong Qiu , Min Tang , Dongping Sun , Xiao Fu
{"title":"A novel injectable sodium alginate/chitosan/sulfated bacterial cellulose hydrogel as biohybrid artificial pancreas for real-time glycaemic regulation","authors":"Xiang Zhao , Wei Xue , Weixiao Ding , Yalei Qiao , Xuehui Chu , Yudong Qiu , Min Tang , Dongping Sun , Xiao Fu","doi":"10.1016/j.carbpol.2025.123323","DOIUrl":null,"url":null,"abstract":"<div><div>Type 1 diabetes mellitus (T1DM) are characterized by blood glucose elevation with pancreatic β cells deficiency. As a safe alternative to frequent subcutaneous insulin injection, pancreatic β cell transplantation provides a promising therapeutic option for blood glucose control in T1DM. However, pancreatic β cell transplantation faces intractable challenges of the poor viability and severe host immune rejection. Therefore, a novel approach capable of improving the poor oxygen/nutrients supply and severe host immune rejection is highly desired. Herein, a novel biohybrid artificial pancreas, presenting glucose-dependent insulin release behavior, is constructed via pancreatic β cells encapsulating in a hydrogel scaffold. The hydrogel scaffold is made of the commixture of sodium alginate (SA), chitosan (CS) and sulfated bacterial cellulose (SBC). The biocompatible three-dimensional (3D) hydrogels protected pancreatic β cells from immune response but also allowed the exchange of nutrients and insulin. As a result of the synergistic effect, the biohybrid artificial pancreas can reverse the hyperglycemia and achieve sustained glycemic control for at least 30 days in diabetic mice. Collectively, we consider that this biohybrid artificial pancreas with an elaborate structure could provide an effective option for the treatment of type 1 diabetes.</div></div>","PeriodicalId":261,"journal":{"name":"Carbohydrate Polymers","volume":"354 ","pages":"Article 123323"},"PeriodicalIF":10.7000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbohydrate Polymers","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0144861725001043","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Type 1 diabetes mellitus (T1DM) are characterized by blood glucose elevation with pancreatic β cells deficiency. As a safe alternative to frequent subcutaneous insulin injection, pancreatic β cell transplantation provides a promising therapeutic option for blood glucose control in T1DM. However, pancreatic β cell transplantation faces intractable challenges of the poor viability and severe host immune rejection. Therefore, a novel approach capable of improving the poor oxygen/nutrients supply and severe host immune rejection is highly desired. Herein, a novel biohybrid artificial pancreas, presenting glucose-dependent insulin release behavior, is constructed via pancreatic β cells encapsulating in a hydrogel scaffold. The hydrogel scaffold is made of the commixture of sodium alginate (SA), chitosan (CS) and sulfated bacterial cellulose (SBC). The biocompatible three-dimensional (3D) hydrogels protected pancreatic β cells from immune response but also allowed the exchange of nutrients and insulin. As a result of the synergistic effect, the biohybrid artificial pancreas can reverse the hyperglycemia and achieve sustained glycemic control for at least 30 days in diabetic mice. Collectively, we consider that this biohybrid artificial pancreas with an elaborate structure could provide an effective option for the treatment of type 1 diabetes.
期刊介绍:
Carbohydrate Polymers stands as a prominent journal in the glycoscience field, dedicated to exploring and harnessing the potential of polysaccharides with applications spanning bioenergy, bioplastics, biomaterials, biorefining, chemistry, drug delivery, food, health, nanotechnology, packaging, paper, pharmaceuticals, medicine, oil recovery, textiles, tissue engineering, wood, and various aspects of glycoscience.
The journal emphasizes the central role of well-characterized carbohydrate polymers, highlighting their significance as the primary focus rather than a peripheral topic. Each paper must prominently feature at least one named carbohydrate polymer, evident in both citation and title, with a commitment to innovative research that advances scientific knowledge.