Extracellular Vesicle-based Delivery of Paclitaxel to Lung Cancer Cells: Uptake, Anticancer Effects, Autophagy and Mitophagy Pathways

IF 4.7 3区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL
Shabnam Pirnezhad Talatapeh , Jafar Rezaie , Vahid Nejati
{"title":"Extracellular Vesicle-based Delivery of Paclitaxel to Lung Cancer Cells: Uptake, Anticancer Effects, Autophagy and Mitophagy Pathways","authors":"Shabnam Pirnezhad Talatapeh ,&nbsp;Jafar Rezaie ,&nbsp;Vahid Nejati","doi":"10.1016/j.arcmed.2025.103194","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Due to their unique properties, extracellular vesicles (EVs) are promising nanocarriers for exogenous drug delivery.</div></div><div><h3>Aim</h3><div>We prepared a drug delivery system based on large EVs (LEVs) containing paclitaxel (PTX) (LEVs-PTX) to investigate anticancer effects on lung cancer cells with a focus on autophagy.</div></div><div><h3>Methods</h3><div>LEVs-PTX were isolated from lung cancer cells by ultracentrifugation and characterized using different techniques. Rhodamine B dye (Rh B) was used to label LEVs-PTX for cell tracking. MTT assay was performed to investigate the cellular toxicity of PTX and LEVs-PTX for 24 h and 48 h. The uptake of LEVs-PTX was monitored by immunofluorescence microscopy in breast and lung cancer cells. A colorimetric assay was performed to evaluate apoptosis, while Western blotting assays were used to investigate autophagy proteins. Real-time PCR was used to measure mitophagy genes.</div></div><div><h3>Results</h3><div>Characterization techniques showed that LEVs were isolated and loaded with PTX. Rh B labeled LEVs, which was confirmed by a fluorescence spectrophotometer. Immunofluorescence microscopy showed that the lung and breast cancer cells had captured LEVs. Cell viability was decreased in LEVs-PTX cells which coincided with an increase in caspase-3 activity in LEVs-PTX cells. The Beclin-1 protein level and LC3 II/I ratio decreased, while the P62 protein level was increased in LEVs-PTX cells. The mitophagy genes such as Pink-1 and Parkin were upregulated in LEVs-PTX cells.</div></div><div><h3>Conclusion</h3><div>The data show that LEVs-PTX induced apoptosis, which inhibited the autophagy pathway and increased mitophagy markers, suggesting damage to cell organelles through intracellular delivery of PTX.</div></div>","PeriodicalId":8318,"journal":{"name":"Archives of Medical Research","volume":"56 4","pages":"Article 103194"},"PeriodicalIF":4.7000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Medical Research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0188440925000141","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Due to their unique properties, extracellular vesicles (EVs) are promising nanocarriers for exogenous drug delivery.

Aim

We prepared a drug delivery system based on large EVs (LEVs) containing paclitaxel (PTX) (LEVs-PTX) to investigate anticancer effects on lung cancer cells with a focus on autophagy.

Methods

LEVs-PTX were isolated from lung cancer cells by ultracentrifugation and characterized using different techniques. Rhodamine B dye (Rh B) was used to label LEVs-PTX for cell tracking. MTT assay was performed to investigate the cellular toxicity of PTX and LEVs-PTX for 24 h and 48 h. The uptake of LEVs-PTX was monitored by immunofluorescence microscopy in breast and lung cancer cells. A colorimetric assay was performed to evaluate apoptosis, while Western blotting assays were used to investigate autophagy proteins. Real-time PCR was used to measure mitophagy genes.

Results

Characterization techniques showed that LEVs were isolated and loaded with PTX. Rh B labeled LEVs, which was confirmed by a fluorescence spectrophotometer. Immunofluorescence microscopy showed that the lung and breast cancer cells had captured LEVs. Cell viability was decreased in LEVs-PTX cells which coincided with an increase in caspase-3 activity in LEVs-PTX cells. The Beclin-1 protein level and LC3 II/I ratio decreased, while the P62 protein level was increased in LEVs-PTX cells. The mitophagy genes such as Pink-1 and Parkin were upregulated in LEVs-PTX cells.

Conclusion

The data show that LEVs-PTX induced apoptosis, which inhibited the autophagy pathway and increased mitophagy markers, suggesting damage to cell organelles through intracellular delivery of PTX.
基于细胞外囊泡的紫杉醇递送至肺癌细胞:摄取、抗癌作用、自噬和有丝自噬途径
细胞外囊泡(EVs)由于其独特的性质,是一种很有前途的外源性药物递送纳米载体。目的制备含紫杉醇(PTX)的大ev (LEVs)给药系统(LEVs-PTX),以自噬为重点研究其对肺癌细胞的抗癌作用。方法采用超离心法从肺癌细胞中分离slev - ptx,并采用不同的技术对其进行鉴定。罗丹明B染料(Rh B)标记leves - ptx用于细胞跟踪。采用MTT法观察PTX和LEVs-PTX在24 h和48 h的细胞毒性。免疫荧光显微镜观察乳腺癌和肺癌细胞对LEVs-PTX的摄取情况。采用比色法检测细胞凋亡,Western blotting检测自噬蛋白。Real-time PCR检测自噬基因。结果表征技术表明,lev被分离,并被PTX负载。Rh B标记LEVs,用荧光分光光度计证实。免疫荧光显微镜显示,肺癌和乳腺癌细胞捕获了lev。LEVs-PTX细胞的细胞活力下降,这与LEVs-PTX细胞中caspase-3活性的增加相一致。laves - ptx细胞Beclin-1蛋白水平和LC3 II/I比值降低,P62蛋白水平升高。在LEVs-PTX细胞中,有丝分裂基因Pink-1和Parkin表达上调。结论laves -PTX诱导细胞凋亡,抑制细胞自噬途径,增加细胞自噬标志物,提示PTX通过胞内递送对细胞器造成损伤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Archives of Medical Research
Archives of Medical Research 医学-医学:研究与实验
CiteScore
12.50
自引率
0.00%
发文量
84
审稿时长
28 days
期刊介绍: Archives of Medical Research serves as a platform for publishing original peer-reviewed medical research, aiming to bridge gaps created by medical specialization. The journal covers three main categories - biomedical, clinical, and epidemiological contributions, along with review articles and preliminary communications. With an international scope, it presents the study of diseases from diverse perspectives, offering the medical community original investigations ranging from molecular biology to clinical epidemiology in a single publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信