Bethany Crow , Roland Grafstrom , Vesa Hongisto , Mitali Kamat , Nikil Kapur , Ross Kelly , Josh Owen , Ashi Rashid , William Stokes , Nicola William , Jeanine Williams , Andrew Nelson
{"title":"Emerging screening platform characterises aminoquinoline structure–activity relationships with phospholipid layers","authors":"Bethany Crow , Roland Grafstrom , Vesa Hongisto , Mitali Kamat , Nikil Kapur , Ross Kelly , Josh Owen , Ashi Rashid , William Stokes , Nicola William , Jeanine Williams , Andrew Nelson","doi":"10.1016/j.bioelechem.2025.108927","DOIUrl":null,"url":null,"abstract":"<div><div>Aminoquinolines (AQ) and substituted aminoquinolines (<em>s</em>-AQ) interact with electrochemically monitored supported dioleoyl phosphatidylcholine (DOPC) monolayers and immobilised artificial membranes (IAM) on HPLC column. The electrochemical sensor records adsorption/partition of the compound on and into the layer as well as specific interactions due to the location of the compound in the layer. HPLC-IAM technology measures the partition coefficient between the solution and phospholipid including partition due to interaction of the positive molecular charge with the phospholipid polar heads. The monolayer interaction results were combined and normalised for the neutral compounds’ lipophilicity as a log biomembrane affinity index (‘log BAI’) to exemplify charge and structural features in the interaction. A ChimeraX molecular modelling procedure was used to aid in the results interpretation. A compound ToxScore value was derived from 5 <em>in vitro</em> assays. The ‘log BAI’ exhibited a linear relationship with the AQ pK<sub>a</sub> values showing that the interaction was related to the molecular positive charge and to the electron donating properties of the –NH<sub>2</sub> group. The correlation outliers showed a tendency/no tendency to H-bonding with the polar groups and a superficial/deeper location respectively in the phospholipid layer. The <em>s</em>-AQ ‘log BAI’ value displayed a power correlation with the compounds’ ToxScore values.</div></div>","PeriodicalId":252,"journal":{"name":"Bioelectrochemistry","volume":"164 ","pages":"Article 108927"},"PeriodicalIF":4.8000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioelectrochemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1567539425000301","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Aminoquinolines (AQ) and substituted aminoquinolines (s-AQ) interact with electrochemically monitored supported dioleoyl phosphatidylcholine (DOPC) monolayers and immobilised artificial membranes (IAM) on HPLC column. The electrochemical sensor records adsorption/partition of the compound on and into the layer as well as specific interactions due to the location of the compound in the layer. HPLC-IAM technology measures the partition coefficient between the solution and phospholipid including partition due to interaction of the positive molecular charge with the phospholipid polar heads. The monolayer interaction results were combined and normalised for the neutral compounds’ lipophilicity as a log biomembrane affinity index (‘log BAI’) to exemplify charge and structural features in the interaction. A ChimeraX molecular modelling procedure was used to aid in the results interpretation. A compound ToxScore value was derived from 5 in vitro assays. The ‘log BAI’ exhibited a linear relationship with the AQ pKa values showing that the interaction was related to the molecular positive charge and to the electron donating properties of the –NH2 group. The correlation outliers showed a tendency/no tendency to H-bonding with the polar groups and a superficial/deeper location respectively in the phospholipid layer. The s-AQ ‘log BAI’ value displayed a power correlation with the compounds’ ToxScore values.
期刊介绍:
An International Journal Devoted to Electrochemical Aspects of Biology and Biological Aspects of Electrochemistry
Bioelectrochemistry is an international journal devoted to electrochemical principles in biology and biological aspects of electrochemistry. It publishes experimental and theoretical papers dealing with the electrochemical aspects of:
• Electrified interfaces (electric double layers, adsorption, electron transfer, protein electrochemistry, basic principles of biosensors, biosensor interfaces and bio-nanosensor design and construction.
• Electric and magnetic field effects (field-dependent processes, field interactions with molecules, intramolecular field effects, sensory systems for electric and magnetic fields, molecular and cellular mechanisms)
• Bioenergetics and signal transduction (energy conversion, photosynthetic and visual membranes)
• Biomembranes and model membranes (thermodynamics and mechanics, membrane transport, electroporation, fusion and insertion)
• Electrochemical applications in medicine and biotechnology (drug delivery and gene transfer to cells and tissues, iontophoresis, skin electroporation, injury and repair).
• Organization and use of arrays in-vitro and in-vivo, including as part of feedback control.
• Electrochemical interrogation of biofilms as generated by microorganisms and tissue reaction associated with medical implants.