Identifying novel drug targets for calcific aortic valve disease through Mendelian randomization

IF 4.9 2区 医学 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS
Dilin Xu , Jin Lu , Yanfang Yang , Wangxing Hu , Jinyong Chen , Junhui Xue , Shuangshuang Yang , Naifang Cao , Haochang Hu , Ningjing Qian , Dao Zhou , Hanyi Dai , Jian'an Wang , Xianbao Liu
{"title":"Identifying novel drug targets for calcific aortic valve disease through Mendelian randomization","authors":"Dilin Xu ,&nbsp;Jin Lu ,&nbsp;Yanfang Yang ,&nbsp;Wangxing Hu ,&nbsp;Jinyong Chen ,&nbsp;Junhui Xue ,&nbsp;Shuangshuang Yang ,&nbsp;Naifang Cao ,&nbsp;Haochang Hu ,&nbsp;Ningjing Qian ,&nbsp;Dao Zhou ,&nbsp;Hanyi Dai ,&nbsp;Jian'an Wang ,&nbsp;Xianbao Liu","doi":"10.1016/j.atherosclerosis.2025.119110","DOIUrl":null,"url":null,"abstract":"<div><h3>Background and aims</h3><div>Calcific aortic valve disease (CAVD) is characterized by progressive leaflet thickening and calcification, with no available pharmacological treatments. Plasma proteins play a pivotal role in disease regulation. This study aimed to uncover novel therapeutic targets for CAVD using Mendelian randomization (MR) integrated with transcriptomic analysis.</div></div><div><h3>Methods</h3><div>Protein quantitative trait loci (pQTL) from the deCODE and UK Biobank Pharma Proteomics Project (UKB-PPP) plasma protein databases were used as exposure data. The FinnGen cohort (9870 cases, 402,311 controls) served as the discovery set, while the TARGET cohort (13,765 cases, 640,102 controls) provided validation. MR and summary data-based Mendelian randomization (SMR) were employed to screen for potential causal targets of CAVD. Colocalization analysis was conducted to assess whether CAVD and target proteins shared common causal SNPs. Additional analyses included trancriptomic profiling at multiple RNA levels. Protein-level validation was conducted via Western blot and immunostaining.</div></div><div><h3>Results</h3><div>Six proteins (ANGPTL4, PCSK9, ITGAV, CTSB, GNPTG, and FURIN) with strong genetic colocalization were identified by MR and SMR analysis. Among these, cellular trancriptomic analysis revealed ANGPTL4 and ITGAV with significantly greater expression in osteogenic group, which was further validated in calcified aortic valves and osteogenic valvular interstitial cells in protein level.</div></div><div><h3>Conclusions</h3><div>This study identified six causal proteins with strong genetic colocalization for CAVD, with ANGPTL4 and ITGAV emerging as the most promising targets for further investigation.</div></div>","PeriodicalId":8623,"journal":{"name":"Atherosclerosis","volume":"402 ","pages":"Article 119110"},"PeriodicalIF":4.9000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atherosclerosis","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021915025000073","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Background and aims

Calcific aortic valve disease (CAVD) is characterized by progressive leaflet thickening and calcification, with no available pharmacological treatments. Plasma proteins play a pivotal role in disease regulation. This study aimed to uncover novel therapeutic targets for CAVD using Mendelian randomization (MR) integrated with transcriptomic analysis.

Methods

Protein quantitative trait loci (pQTL) from the deCODE and UK Biobank Pharma Proteomics Project (UKB-PPP) plasma protein databases were used as exposure data. The FinnGen cohort (9870 cases, 402,311 controls) served as the discovery set, while the TARGET cohort (13,765 cases, 640,102 controls) provided validation. MR and summary data-based Mendelian randomization (SMR) were employed to screen for potential causal targets of CAVD. Colocalization analysis was conducted to assess whether CAVD and target proteins shared common causal SNPs. Additional analyses included trancriptomic profiling at multiple RNA levels. Protein-level validation was conducted via Western blot and immunostaining.

Results

Six proteins (ANGPTL4, PCSK9, ITGAV, CTSB, GNPTG, and FURIN) with strong genetic colocalization were identified by MR and SMR analysis. Among these, cellular trancriptomic analysis revealed ANGPTL4 and ITGAV with significantly greater expression in osteogenic group, which was further validated in calcified aortic valves and osteogenic valvular interstitial cells in protein level.

Conclusions

This study identified six causal proteins with strong genetic colocalization for CAVD, with ANGPTL4 and ITGAV emerging as the most promising targets for further investigation.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Atherosclerosis
Atherosclerosis 医学-外周血管病
CiteScore
9.80
自引率
3.80%
发文量
1269
审稿时长
36 days
期刊介绍: Atherosclerosis has an open access mirror journal Atherosclerosis: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review. Atherosclerosis brings together, from all sources, papers concerned with investigation on atherosclerosis, its risk factors and clinical manifestations. Atherosclerosis covers basic and translational, clinical and population research approaches to arterial and vascular biology and disease, as well as their risk factors including: disturbances of lipid and lipoprotein metabolism, diabetes and hypertension, thrombosis, and inflammation. The Editors are interested in original or review papers dealing with the pathogenesis, environmental, genetic and epigenetic basis, diagnosis or treatment of atherosclerosis and related diseases as well as their risk factors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信