From λ-hollow frames to λ-repletions in W: II. λ-repletions in W

IF 0.6 4区 数学 Q3 MATHEMATICS
Richard N. Ball , Anthony W. Hager , Joanne Walters-Wayland
{"title":"From λ-hollow frames to λ-repletions in W: II. λ-repletions in W","authors":"Richard N. Ball ,&nbsp;Anthony W. Hager ,&nbsp;Joanne Walters-Wayland","doi":"10.1016/j.topol.2025.109233","DOIUrl":null,"url":null,"abstract":"<div><div>In this article we analyze the fine structure of the essential extensions of an object of <strong>W</strong>, the category of divisible archimedean lattice ordered groups with designated weak units. In particular, we show that an object <em>G</em> has an ordinally indexed sequence <span><math><msub><mrow><mo>{</mo><msubsup><mrow><mi>τ</mi></mrow><mrow><mi>G</mi></mrow><mrow><mi>α</mi></mrow></msubsup><mo>}</mo></mrow><mrow><msub><mrow><mi>δ</mi></mrow><mrow><mi>G</mi></mrow></msub></mrow></msub></math></span> of essential extensions with the following features.<span><span><img></span></span><ul><li><span>•</span><span><div><span><math><msubsup><mrow><mi>τ</mi></mrow><mrow><mi>G</mi></mrow><mrow><mn>0</mn></mrow></msubsup></math></span> is (isomorphic to) the identity function on <em>G</em>.</div></span></li><li><span>•</span><span><div>For every <span><math><mi>α</mi><mo>&gt;</mo><mn>0</mn></math></span>, <span><math><msubsup><mrow><mi>τ</mi></mrow><mrow><mi>G</mi></mrow><mrow><mi>α</mi></mrow></msubsup></math></span> is an essential extension of <em>G</em> into a <strong>W</strong>-object which is of the form <span><math><mi>R</mi><mi>L</mi></math></span> for some frame <em>L</em>, and which is <em>λ</em>-replete for some <em>λ</em>.</div></span></li><li><span>•</span><span><div>Every such extension is (isomorphic to) <span><math><msubsup><mrow><mi>τ</mi></mrow><mrow><mi>G</mi></mrow><mrow><mi>α</mi></mrow></msubsup></math></span> for a unique <em>α</em>.</div></span></li><li><span>•</span><span><div><span><math><msubsup><mrow><mi>τ</mi></mrow><mrow><mi>G</mi></mrow><mrow><msub><mrow><mi>δ</mi></mrow><mrow><mi>G</mi></mrow></msub></mrow></msubsup></math></span> is (isomorphic to) the maximal essential extension of <em>G</em>.</div></span></li><li><span>•</span><span><div>If <span><math><mi>λ</mi><mo>≤</mo><mi>ν</mi><mo>≤</mo><msub><mrow><mi>δ</mi></mrow><mrow><mi>G</mi></mrow></msub></math></span> then <span><math><msubsup><mrow><mi>τ</mi></mrow><mrow><mi>G</mi></mrow><mrow><mi>ν</mi></mrow></msubsup></math></span> factors through <span><math><msubsup><mrow><mi>τ</mi></mrow><mrow><mi>G</mi></mrow><mrow><mi>λ</mi></mrow></msubsup></math></span>.</div></span></li></ul> Here a <strong>W</strong>-object is said to be <em>λ</em>-replete if it has the following equivalent properties.<ul><li><span>•</span><span><div>Every <em>λ</em>-generated <strong>W</strong>-kernel is a polar.</div></span></li><li><span>•</span><span><div>Every proper <em>λ</em>-generated <strong>W</strong>-kernel of <em>G</em> is contained in a proper polar.</div></span></li><li><span>•</span><span><div>For <em>λ</em>-generated <strong>W</strong>-kernels <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span>, if <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>⊈</mo><msub><mrow><mi>K</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> then there exists <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span> such that <span><math><mn>0</mn><mo>≠</mo><msub><mrow><mi>K</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>⊆</mo><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>∩</mo><msub><mrow><mi>K</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>=</mo><mn>0</mn></math></span>.</div></span></li><li><span>•</span><span><div>For <strong>W</strong>-kernels <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>⊆</mo><msub><mrow><mi>K</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>, if <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> is <em>λ</em>-generated then <span><math><msubsup><mrow><mi>K</mi></mrow><mrow><mn>1</mn></mrow><mrow><mo>⊥</mo><mo>⊥</mo></mrow></msubsup><mo>⊆</mo><msub><mrow><mi>K</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>.</div></span></li><li><span>•</span><span><div>Every <strong>W</strong>-kernel of <em>G</em> is <em>λ</em>-closed, i.e., closed under <em>λ</em>-joins.</div></span></li><li><span>•</span><span><div>Every <strong>W</strong>-homomorphism out of <em>G</em> is <em>λ</em>-complete.</div></span></li></ul> We refer to this as the <em>sequence of λ-repletions</em> of <em>G</em>.</div></div>","PeriodicalId":51201,"journal":{"name":"Topology and its Applications","volume":"363 ","pages":"Article 109233"},"PeriodicalIF":0.6000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topology and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166864125000318","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this article we analyze the fine structure of the essential extensions of an object of W, the category of divisible archimedean lattice ordered groups with designated weak units. In particular, we show that an object G has an ordinally indexed sequence {τGα}δG of essential extensions with the following features.
  • τG0 is (isomorphic to) the identity function on G.
  • For every α>0, τGα is an essential extension of G into a W-object which is of the form RL for some frame L, and which is λ-replete for some λ.
  • Every such extension is (isomorphic to) τGα for a unique α.
  • τGδG is (isomorphic to) the maximal essential extension of G.
  • If λνδG then τGν factors through τGλ.
Here a W-object is said to be λ-replete if it has the following equivalent properties.
  • Every λ-generated W-kernel is a polar.
  • Every proper λ-generated W-kernel of G is contained in a proper polar.
  • For λ-generated W-kernels Ki, if K1K2 then there exists K3 such that 0K3K1 and K3K2=0.
  • For W-kernels K1K2, if K1 is λ-generated then K1K2.
  • Every W-kernel of G is λ-closed, i.e., closed under λ-joins.
  • Every W-homomorphism out of G is λ-complete.
We refer to this as the sequence of λ-repletions of G.
W: II从λ空心框架到λ填充。λ-在W中的重复
本文分析了具有指定弱单位的可分阿基米德格序群范畴W的本质扩展的精细结构。特别地,我们证明了对象G具有一个有序索引序列{τGα}δG,其本质扩展具有以下特征。•τG0是G上的恒等函数(同构)•对于每一个α>;0, τGα是G在w对象上的本质扩展,该对象对某坐标系L具有RL的形式,对某坐标系L具有λ-满的形式。•对于唯一的α,每一个这样的扩展都(同构)于τGα。•τGδG是g的最大本质扩展(同构)•如果λ≤ν≤δG,则τGν因子通过τGλ。在这里,如果一个w -物体具有下列等价性质,我们就说它是λ-满的。•每个λ生成的w核都是一个极坐标。•G的每一个适当λ生成的w核都包含在一个适当极中。•对于λ生成的w核Ki,若K1≥K2,则存在K3,使得0≠K3≥K1,且K3∩K2=0。•W-kernels K1⊆K2,如果K1λ生成然后K1⊥⊥⊆K2。•G的每一个w核都是λ闭的,即在λ-连接下闭。•G外的所有w同态都是λ完全的。我们把它称为G的λ-重复序列。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
33.30%
发文量
251
审稿时长
6 months
期刊介绍: Topology and its Applications is primarily concerned with publishing original research papers of moderate length. However, a limited number of carefully selected survey or expository papers are also included. The mathematical focus of the journal is that suggested by the title: Research in Topology. It is felt that it is inadvisable to attempt a definitive description of topology as understood for this journal. Certainly the subject includes the algebraic, general, geometric, and set-theoretic facets of topology as well as areas of interactions between topology and other mathematical disciplines, e.g. topological algebra, topological dynamics, functional analysis, category theory. Since the roles of various aspects of topology continue to change, the non-specific delineation of topics serves to reflect the current state of research in topology. At regular intervals, the journal publishes a section entitled Open Problems in Topology, edited by J. van Mill and G.M. Reed. This is a status report on the 1100 problems listed in the book of the same name published by North-Holland in 1990, edited by van Mill and Reed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信