In silico assessments, Design, synthesis, and biological evaluation of 5-methylisoxazole-4-carboxamide derivatives

IF 3.2 4区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Pravin Khedkar, Rutuja Ukhade, Hemchandra K. Chaudhari
{"title":"In silico assessments, Design, synthesis, and biological evaluation of 5-methylisoxazole-4-carboxamide derivatives","authors":"Pravin Khedkar,&nbsp;Rutuja Ukhade,&nbsp;Hemchandra K. Chaudhari","doi":"10.1016/j.jics.2025.101616","DOIUrl":null,"url":null,"abstract":"<div><div>Isoxazole, a five-membered heterocyclic compound containing oxygen and nitrogen atoms, exhibited potent antioxidant, antibacterial, anticancer, anti-inflammatory, and antiviral activities. The 5-methylisoxazole-4-carboxylic acid molecule serves as a core structure for synthesizing various derivatives through amide bond formation. The main aim of the present work is synthesis of 12 derivatives from 5-methylisoxazole-4-carboxylic acid and evaluating their biological activities, including antimicrobial, antioxidant, and anticancer properties. Results indicate that several synthesised derivatives demonstrated significant biological activity. Notably, molecules 2, 12, and 14 exhibited superior antioxidant activity compared to the standard ascorbic acid, with molecule 14 showing the highest scavenging activity. In antimicrobial study, various compounds elicited potent inhibitory effects against <em>Pseudomonas aeruginosa</em> and <em>Staphylococcus aureus</em>. The anticancer activity revealed that most compounds reduced cell viability in the MCF-7 cell line, with IC50 values generally below 200 μg/mL, except for molecules 2, 11, and 13. This study highlights the potential of 5-methylisoxazole-4-carboxylic acid derivatives as promising candidates for further development in therapeutic applications due to their broad-spectrum biological activities.</div></div>","PeriodicalId":17276,"journal":{"name":"Journal of the Indian Chemical Society","volume":"102 3","pages":"Article 101616"},"PeriodicalIF":3.2000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Indian Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019452225000512","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Isoxazole, a five-membered heterocyclic compound containing oxygen and nitrogen atoms, exhibited potent antioxidant, antibacterial, anticancer, anti-inflammatory, and antiviral activities. The 5-methylisoxazole-4-carboxylic acid molecule serves as a core structure for synthesizing various derivatives through amide bond formation. The main aim of the present work is synthesis of 12 derivatives from 5-methylisoxazole-4-carboxylic acid and evaluating their biological activities, including antimicrobial, antioxidant, and anticancer properties. Results indicate that several synthesised derivatives demonstrated significant biological activity. Notably, molecules 2, 12, and 14 exhibited superior antioxidant activity compared to the standard ascorbic acid, with molecule 14 showing the highest scavenging activity. In antimicrobial study, various compounds elicited potent inhibitory effects against Pseudomonas aeruginosa and Staphylococcus aureus. The anticancer activity revealed that most compounds reduced cell viability in the MCF-7 cell line, with IC50 values generally below 200 μg/mL, except for molecules 2, 11, and 13. This study highlights the potential of 5-methylisoxazole-4-carboxylic acid derivatives as promising candidates for further development in therapeutic applications due to their broad-spectrum biological activities.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.50
自引率
7.70%
发文量
492
审稿时长
3-8 weeks
期刊介绍: The Journal of the Indian Chemical Society publishes original, fundamental, theorical, experimental research work of highest quality in all areas of chemistry, biochemistry, medicinal chemistry, electrochemistry, agrochemistry, chemical engineering and technology, food chemistry, environmental chemistry, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信