Unveiling the exsolution mechanisms and investigation of the catalytic processes of Sr2FeMo0.65Ni0.35O6-δ using in situ transmission electron microscopy

IF 13.2 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Pritam K. Chakraborty , Stephanie E. Wolf , Govind Ummethala , Ansgar Meise , Tobias Mehlkoph , Junbeom Park , Marc Heggen , Amir H. Tavabi , Vaibhav Vibhu , André Karl , Eva Jodat , L.G.J. (Bert) de Haart , Rafal E. Dunin-Borowski , Shibabrata Basak , Rüdiger-A. Eichel
{"title":"Unveiling the exsolution mechanisms and investigation of the catalytic processes of Sr2FeMo0.65Ni0.35O6-δ using in situ transmission electron microscopy","authors":"Pritam K. Chakraborty ,&nbsp;Stephanie E. Wolf ,&nbsp;Govind Ummethala ,&nbsp;Ansgar Meise ,&nbsp;Tobias Mehlkoph ,&nbsp;Junbeom Park ,&nbsp;Marc Heggen ,&nbsp;Amir H. Tavabi ,&nbsp;Vaibhav Vibhu ,&nbsp;André Karl ,&nbsp;Eva Jodat ,&nbsp;L.G.J. (Bert) de Haart ,&nbsp;Rafal E. Dunin-Borowski ,&nbsp;Shibabrata Basak ,&nbsp;Rüdiger-A. Eichel","doi":"10.1016/j.nantod.2025.102649","DOIUrl":null,"url":null,"abstract":"<div><div>Solid oxide cells (SOCs) are likely to play crucial role in the green energy transition, but their widespread adoption is hindered by degradation issues, particularly catalyst agglomeration. Nanoparticle exsolution in double-perovskite materials offers a promising solution by creating electrode materials with stable metallic nanocatalysts strongly bonded to the parent oxide, mitigating high-temperature agglomeration issues. Thus, understanding the dynamic evolution of microstructure and catalytic behavior in such materials is vital for developing high-performing SOC catalysts. This study utilized a multimodal approach to investigate the dynamics of exsolution in Sr<sub>2</sub>FeMo<sub>0.65</sub>Ni<sub>0.35</sub>O<sub>6-δ</sub> (SFM-Ni) and its effect on cell performance. <em>In situ</em> environmental transmission electron microscopy (ETEM), <em>in situ</em> transmission electron microscopy (TEM) coupled with mass spectrometry visualized the formation and the stability of exsolved particles especially at the concave faces of the parent material during chemical conversion of CO from CO<sub>2</sub>. Simultaneously, macro-scale cell experiments coupled with electrochemical impedance spectroscopy, and focused ion beam-scanning electron microscopy (FIB-SEM) tomography, apart from verifying the nanoscale observations, provided crucial insights into the correlation between the exsolution process observed at the micro-scale and the overall cell performance. These findings offers valuable insights into the design and optimization of improved electrode materials for SOCs. Understanding the dynamic behavior of exsolved catalysts would help in enhancing the electrochemical performance at both the nano and macro levels, ultimately advancing the field of sustainable energy technologies.</div></div>","PeriodicalId":395,"journal":{"name":"Nano Today","volume":"61 ","pages":"Article 102649"},"PeriodicalIF":13.2000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Today","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1748013225000210","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Solid oxide cells (SOCs) are likely to play crucial role in the green energy transition, but their widespread adoption is hindered by degradation issues, particularly catalyst agglomeration. Nanoparticle exsolution in double-perovskite materials offers a promising solution by creating electrode materials with stable metallic nanocatalysts strongly bonded to the parent oxide, mitigating high-temperature agglomeration issues. Thus, understanding the dynamic evolution of microstructure and catalytic behavior in such materials is vital for developing high-performing SOC catalysts. This study utilized a multimodal approach to investigate the dynamics of exsolution in Sr2FeMo0.65Ni0.35O6-δ (SFM-Ni) and its effect on cell performance. In situ environmental transmission electron microscopy (ETEM), in situ transmission electron microscopy (TEM) coupled with mass spectrometry visualized the formation and the stability of exsolved particles especially at the concave faces of the parent material during chemical conversion of CO from CO2. Simultaneously, macro-scale cell experiments coupled with electrochemical impedance spectroscopy, and focused ion beam-scanning electron microscopy (FIB-SEM) tomography, apart from verifying the nanoscale observations, provided crucial insights into the correlation between the exsolution process observed at the micro-scale and the overall cell performance. These findings offers valuable insights into the design and optimization of improved electrode materials for SOCs. Understanding the dynamic behavior of exsolved catalysts would help in enhancing the electrochemical performance at both the nano and macro levels, ultimately advancing the field of sustainable energy technologies.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nano Today
Nano Today 工程技术-材料科学:综合
CiteScore
21.50
自引率
3.40%
发文量
305
审稿时长
40 days
期刊介绍: Nano Today is a journal dedicated to publishing influential and innovative work in the field of nanoscience and technology. It covers a wide range of subject areas including biomaterials, materials chemistry, materials science, chemistry, bioengineering, biochemistry, genetics and molecular biology, engineering, and nanotechnology. The journal considers articles that inform readers about the latest research, breakthroughs, and topical issues in these fields. It provides comprehensive coverage through a mixture of peer-reviewed articles, research news, and information on key developments. Nano Today is abstracted and indexed in Science Citation Index, Ei Compendex, Embase, Scopus, and INSPEC.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信