Slamming loads induced by dam-break flow on land-based oscillating water columns: Numerical and experimental study

IF 4.2 2区 工程技术 Q1 ENGINEERING, CIVIL
Xuanlie Zhao , Shiqi Pan , Qingping Zou , Jing Geng
{"title":"Slamming loads induced by dam-break flow on land-based oscillating water columns: Numerical and experimental study","authors":"Xuanlie Zhao ,&nbsp;Shiqi Pan ,&nbsp;Qingping Zou ,&nbsp;Jing Geng","doi":"10.1016/j.coastaleng.2025.104715","DOIUrl":null,"url":null,"abstract":"<div><div>A 3D Reynolds-Averaged Navier-Stokes (RANS) flow solver with a Volume of Fluid (VOF) surface capturing scheme is used to investigate the dam-break flow induced slamming impacts on land-based oscillating water columns (OWC). Comprehensive experiments are conducted to validate the numerical model. It is found that the compressible RANS-VOF solver more accurately captures the key physical processes in this complex fluid-structure interaction process than the incompressible solver. The complete process of dam-break flow impact on OWCs is analyzed in detail, focusing on the relationship between peak forces, moments, slamming pressures, and fluid behaviors. It is found that the peaked vertical loads due to air pressure on the deck of the OWC chamber are non-negligible, particularly for small opening ratios (&lt;3.5%), which has not been previously reported. Additionally, the air pressure on the deck significantly contributes to the moment of the OWC caisson. The distribution of slamming pressure on the front wall, corresponding to peak loading, resembles that of breaking waves in realistic seas. This implies that dam-break flow tests can be used to capture the fundamental physics behind the strong nonlinear waves interacting with OWCs. Numerical simulations are performed to examine the influence of the opening ratio of the OWC chamber on slamming characteristics. It is found that slamming loads on the OWC decrease rapidly with increasing opening ratio in from 0% to 3.5%. However, when the opening ratio exceeds the critical value of 3.5%, the slamming loads change only slightly. Furthermore, during the slamming process, the air pressure inside the chamber is proportional to the velocity of the water surface inside the chamber.</div></div>","PeriodicalId":50996,"journal":{"name":"Coastal Engineering","volume":"198 ","pages":"Article 104715"},"PeriodicalIF":4.2000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Coastal Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378383925000201","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

A 3D Reynolds-Averaged Navier-Stokes (RANS) flow solver with a Volume of Fluid (VOF) surface capturing scheme is used to investigate the dam-break flow induced slamming impacts on land-based oscillating water columns (OWC). Comprehensive experiments are conducted to validate the numerical model. It is found that the compressible RANS-VOF solver more accurately captures the key physical processes in this complex fluid-structure interaction process than the incompressible solver. The complete process of dam-break flow impact on OWCs is analyzed in detail, focusing on the relationship between peak forces, moments, slamming pressures, and fluid behaviors. It is found that the peaked vertical loads due to air pressure on the deck of the OWC chamber are non-negligible, particularly for small opening ratios (<3.5%), which has not been previously reported. Additionally, the air pressure on the deck significantly contributes to the moment of the OWC caisson. The distribution of slamming pressure on the front wall, corresponding to peak loading, resembles that of breaking waves in realistic seas. This implies that dam-break flow tests can be used to capture the fundamental physics behind the strong nonlinear waves interacting with OWCs. Numerical simulations are performed to examine the influence of the opening ratio of the OWC chamber on slamming characteristics. It is found that slamming loads on the OWC decrease rapidly with increasing opening ratio in from 0% to 3.5%. However, when the opening ratio exceeds the critical value of 3.5%, the slamming loads change only slightly. Furthermore, during the slamming process, the air pressure inside the chamber is proportional to the velocity of the water surface inside the chamber.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Coastal Engineering
Coastal Engineering 工程技术-工程:大洋
CiteScore
9.20
自引率
13.60%
发文量
0
审稿时长
3.5 months
期刊介绍: Coastal Engineering is an international medium for coastal engineers and scientists. Combining practical applications with modern technological and scientific approaches, such as mathematical and numerical modelling, laboratory and field observations and experiments, it publishes fundamental studies as well as case studies on the following aspects of coastal, harbour and offshore engineering: waves, currents and sediment transport; coastal, estuarine and offshore morphology; technical and functional design of coastal and harbour structures; morphological and environmental impact of coastal, harbour and offshore structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信