Human placental mesenchymal stem cells regulate the antioxidant capacity of CD8+PD-1+ T cells through the CD73/ADO/Nrf2 pathway to protect against liver damage in mice with acute graft-versus-host disease

IF 3.2 3区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Wei Yan , Hengchao Zhang , Jiashen Zhang , Yaxuan Zhao , Yunhua Wu , Xiaolin Ma , Xiying Luan
{"title":"Human placental mesenchymal stem cells regulate the antioxidant capacity of CD8+PD-1+ T cells through the CD73/ADO/Nrf2 pathway to protect against liver damage in mice with acute graft-versus-host disease","authors":"Wei Yan ,&nbsp;Hengchao Zhang ,&nbsp;Jiashen Zhang ,&nbsp;Yaxuan Zhao ,&nbsp;Yunhua Wu ,&nbsp;Xiaolin Ma ,&nbsp;Xiying Luan","doi":"10.1016/j.molimm.2025.01.016","DOIUrl":null,"url":null,"abstract":"<div><div>Graft-versus-host disease (GVHD) constitutes a severe complication that occurs after allogeneic hematopoietic stem cell transplantation (allo-HSCT), significantly reducing the survival rate of patients. Mesenchymal stem cells (MSCs) are capable of ameliorating the tissue damage caused by GVHD through exerting immunosuppressive effects; however, the relevant mechanisms require further investigation. This study used a GVHD mouse model to explore the therapeutic effects and mechanisms of human placental mesenchymal stem cells (hPMSCs) in mitigating GVHD-induced liver injury. The findings indicated that hPMSCs reduced the proportion of CD8<sup>+</sup>PD-1<sup>+</sup> T cells in both the liver and spleen of GVHD mice, decreased reactive oxygen species (ROS) levels, and upregulated glutathione S transferase (GST) and glutathione (GSH) levels. Consistently, this led to a decrease in the expression of liver fibrosis markers, including alpha-smooth muscle actin (α-SMA) and fibronectin (FN). Moreover, CD8<sup>+</sup>PD-1<sup>+</sup> T cells and ROS were positively correlated with α-SMA and FN, respectively, whereas GST and GSH were negatively correlated with them. hPMSCs with low expression in CD73 attenuated this effect. <em>In vitro</em> studies demonstrated that hPMSCs upregulated the expression of nuclear factor-E2-related factor 2 (Nrf2) via the CD73/adenosine (ADO) pathway, regulated oxidative metabolism, and reduced the number of CD8<sup>+</sup>PD-1<sup>+</sup> T cells. The results suggested that hPMSCs contributed to the regulation of redox homeostasis and reduced the proportion of CD8<sup>+</sup>PD-1<sup>+</sup> T cells through the CD73/ADO/Nrf2 signaling pathway, thereby alleviating liver injury associated with GVHD.</div></div>","PeriodicalId":18938,"journal":{"name":"Molecular immunology","volume":"179 ","pages":"Pages 71-83"},"PeriodicalIF":3.2000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular immunology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0161589025000239","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Graft-versus-host disease (GVHD) constitutes a severe complication that occurs after allogeneic hematopoietic stem cell transplantation (allo-HSCT), significantly reducing the survival rate of patients. Mesenchymal stem cells (MSCs) are capable of ameliorating the tissue damage caused by GVHD through exerting immunosuppressive effects; however, the relevant mechanisms require further investigation. This study used a GVHD mouse model to explore the therapeutic effects and mechanisms of human placental mesenchymal stem cells (hPMSCs) in mitigating GVHD-induced liver injury. The findings indicated that hPMSCs reduced the proportion of CD8+PD-1+ T cells in both the liver and spleen of GVHD mice, decreased reactive oxygen species (ROS) levels, and upregulated glutathione S transferase (GST) and glutathione (GSH) levels. Consistently, this led to a decrease in the expression of liver fibrosis markers, including alpha-smooth muscle actin (α-SMA) and fibronectin (FN). Moreover, CD8+PD-1+ T cells and ROS were positively correlated with α-SMA and FN, respectively, whereas GST and GSH were negatively correlated with them. hPMSCs with low expression in CD73 attenuated this effect. In vitro studies demonstrated that hPMSCs upregulated the expression of nuclear factor-E2-related factor 2 (Nrf2) via the CD73/adenosine (ADO) pathway, regulated oxidative metabolism, and reduced the number of CD8+PD-1+ T cells. The results suggested that hPMSCs contributed to the regulation of redox homeostasis and reduced the proportion of CD8+PD-1+ T cells through the CD73/ADO/Nrf2 signaling pathway, thereby alleviating liver injury associated with GVHD.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular immunology
Molecular immunology 医学-免疫学
CiteScore
6.90
自引率
2.80%
发文量
324
审稿时长
50 days
期刊介绍: Molecular Immunology publishes original articles, reviews and commentaries on all areas of immunology, with a particular focus on description of cellular, biochemical or genetic mechanisms underlying immunological phenomena. Studies on all model organisms, from invertebrates to humans, are suitable. Examples include, but are not restricted to: Infection, autoimmunity, transplantation, immunodeficiencies, inflammation and tumor immunology Mechanisms of induction, regulation and termination of innate and adaptive immunity Intercellular communication, cooperation and regulation Intracellular mechanisms of immunity (endocytosis, protein trafficking, pathogen recognition, antigen presentation, etc) Mechanisms of action of the cells and molecules of the immune system Structural analysis Development of the immune system Comparative immunology and evolution of the immune system "Omics" studies and bioinformatics Vaccines, biotechnology and therapeutic manipulation of the immune system (therapeutic antibodies, cytokines, cellular therapies, etc) Technical developments.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信