Virus-inspired biogenic delivery system for advancing cancer therapy

Di Sun , Hao Liang , Qianwen Mu , Chengchao Chu , Gang Liu , Chao Liu
{"title":"Virus-inspired biogenic delivery system for advancing cancer therapy","authors":"Di Sun ,&nbsp;Hao Liang ,&nbsp;Qianwen Mu ,&nbsp;Chengchao Chu ,&nbsp;Gang Liu ,&nbsp;Chao Liu","doi":"10.1016/j.bmt.2025.100069","DOIUrl":null,"url":null,"abstract":"<div><div>Virus-inspired particles have been utilized in various applications, including vaccination, gene therapy, drug therapy, and diagnostics. Biogenic delivery systems imitating the natural structure of viruses are regarded as innovative nanoplatforms used to deliver drug compounds to related sites and target cells in organisms. Among them, the components comprised of virus-like particles (VLPs) derive from the proteins or peptides of the viruses; the glycoproteins on their surface exert significant function as specific targeting. Types of assembled glycoproteins and encapsulated drug molecules confer the complexity and varieties of structure, function, and treatment of VLPs. VLPs lack viral virulence, resulting from a viral genetic material deficiency. In vaccine research, Virus-mimic nanovesicles have been effectively verified against cancer via the immunogenicity and the pharmacological effect of drug molecules delivered to mediate an immune response in the body. This review summarizes the research status of virus-inspired drug delivery platforms for cancer therapy utilization.</div></div>","PeriodicalId":100180,"journal":{"name":"Biomedical Technology","volume":"9 ","pages":"Article 100069"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Technology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949723X25000017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Virus-inspired particles have been utilized in various applications, including vaccination, gene therapy, drug therapy, and diagnostics. Biogenic delivery systems imitating the natural structure of viruses are regarded as innovative nanoplatforms used to deliver drug compounds to related sites and target cells in organisms. Among them, the components comprised of virus-like particles (VLPs) derive from the proteins or peptides of the viruses; the glycoproteins on their surface exert significant function as specific targeting. Types of assembled glycoproteins and encapsulated drug molecules confer the complexity and varieties of structure, function, and treatment of VLPs. VLPs lack viral virulence, resulting from a viral genetic material deficiency. In vaccine research, Virus-mimic nanovesicles have been effectively verified against cancer via the immunogenicity and the pharmacological effect of drug molecules delivered to mediate an immune response in the body. This review summarizes the research status of virus-inspired drug delivery platforms for cancer therapy utilization.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信