Climate and soil factors drive the functional and phylogenetic assembly of Qinghai-Tibetan grassland communities via multiple paths

IF 3 2区 环境科学与生态学 Q2 ECOLOGY
Xiaomei Kang , Yanjun Liu , Xinyang Wu , Lijie Duan , Jiachang Jiang , Aoran Zhang , Wei Qi
{"title":"Climate and soil factors drive the functional and phylogenetic assembly of Qinghai-Tibetan grassland communities via multiple paths","authors":"Xiaomei Kang ,&nbsp;Yanjun Liu ,&nbsp;Xinyang Wu ,&nbsp;Lijie Duan ,&nbsp;Jiachang Jiang ,&nbsp;Aoran Zhang ,&nbsp;Wei Qi","doi":"10.1016/j.baae.2025.01.011","DOIUrl":null,"url":null,"abstract":"<div><div>Elucidating the functional and phylogenetic community structures is essential for understanding coexistence of plant species and biodiversity within ecosystems. Despite their significance, the manner in which these structures change along environmental gradients has not been explored extensively. We estimated the phylogenetic diversity (PD) and community-weighted mean (CWM) and functional diversity (FD) values of four key functional traits in 558 grassland plots across the Qinghai-Tibetan Plateau (QTP) and assessed their relationship to climate and soil factors. Our results demonstrate that climate has a more pronounced direct impact on community structures than soil properties. Moreover, the indirect effect of climate through soil conditions does not significantly contribute to the observed patterns in functional and phylogenetic diversity. Annual and seasonal temperature was a reliable predictor of functional structure of plant or organ size traits, especially CWM of leaf size and CWM and FD of plant height. CWM and FD of most leaf traits and PD were correlated positively with multiple precipitation factors and humidity but negatively with sunshine hours. We highlight the importance of temperature, local resource availability and environmental filtering in governing the functional and phylogenetic structures of the QTP grassland communities. These findings have the potential to improve our predictions of climate change impacts on plant community assembly.</div></div>","PeriodicalId":8708,"journal":{"name":"Basic and Applied Ecology","volume":"83 ","pages":"Pages 109-117"},"PeriodicalIF":3.0000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Basic and Applied Ecology","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1439179125000118","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Elucidating the functional and phylogenetic community structures is essential for understanding coexistence of plant species and biodiversity within ecosystems. Despite their significance, the manner in which these structures change along environmental gradients has not been explored extensively. We estimated the phylogenetic diversity (PD) and community-weighted mean (CWM) and functional diversity (FD) values of four key functional traits in 558 grassland plots across the Qinghai-Tibetan Plateau (QTP) and assessed their relationship to climate and soil factors. Our results demonstrate that climate has a more pronounced direct impact on community structures than soil properties. Moreover, the indirect effect of climate through soil conditions does not significantly contribute to the observed patterns in functional and phylogenetic diversity. Annual and seasonal temperature was a reliable predictor of functional structure of plant or organ size traits, especially CWM of leaf size and CWM and FD of plant height. CWM and FD of most leaf traits and PD were correlated positively with multiple precipitation factors and humidity but negatively with sunshine hours. We highlight the importance of temperature, local resource availability and environmental filtering in governing the functional and phylogenetic structures of the QTP grassland communities. These findings have the potential to improve our predictions of climate change impacts on plant community assembly.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Basic and Applied Ecology
Basic and Applied Ecology 环境科学-生态学
CiteScore
6.90
自引率
5.30%
发文量
103
审稿时长
10.6 weeks
期刊介绍: Basic and Applied Ecology provides a forum in which significant advances and ideas can be rapidly communicated to a wide audience. Basic and Applied Ecology publishes original contributions, perspectives and reviews from all areas of basic and applied ecology. Ecologists from all countries are invited to publish ecological research of international interest in its pages. There is no bias with regard to taxon or geographical area.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信