A comprehensive wind power prediction system based on correct multiscale clustering ensemble, similarity matching, and improved whale optimization algorithm—A case study in China

IF 9 1区 工程技术 Q1 ENERGY & FUELS
Chunsheng Yu
{"title":"A comprehensive wind power prediction system based on correct multiscale clustering ensemble, similarity matching, and improved whale optimization algorithm—A case study in China","authors":"Chunsheng Yu","doi":"10.1016/j.renene.2025.122529","DOIUrl":null,"url":null,"abstract":"<div><div>As an important renewable energy source, wind energy is significant for realizing energy transition and reducing carbon emissions. With the increasing penetration of wind energy in the global energy system, higher prediction accuracy is needed to ensure the safe and stable operation of the power grid. However, the existing wind power prediction methods are constantly pursuing model improvement, ignoring the importance of data quality to the prediction performance, resulting in a stagnation of the upper limit of prediction accuracy. In this paper, we establish a comprehensive wind power prediction system based on correct multi-scale clustering ensemble, similarity matching, and an improved whale optimization algorithm. Firstly, multiple classification algorithms combined with meteorological data are used to correct the extreme scenarios in the clustering results. Secondly, a library of typical fluctuation patterns is established based on the clustering ensemble results, and the optimal training dataset is determined by similarity matching. Finally, complete ensemble empirical mode decomposition with adaptive noise(CEEMDAN) is used to extract further the power data’s local features and time–frequency characteristics and to predict the modal components using the improved whale optimization algorithm(IWOA)-optimized BiLSTM network. The results of the three sets of experiments show that the proposed model is able to improve more than 10% in terms of MAE, RMSE, and MAPE compared to other models, and the model robustness is high.</div></div>","PeriodicalId":419,"journal":{"name":"Renewable Energy","volume":"243 ","pages":"Article 122529"},"PeriodicalIF":9.0000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Renewable Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960148125001910","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

As an important renewable energy source, wind energy is significant for realizing energy transition and reducing carbon emissions. With the increasing penetration of wind energy in the global energy system, higher prediction accuracy is needed to ensure the safe and stable operation of the power grid. However, the existing wind power prediction methods are constantly pursuing model improvement, ignoring the importance of data quality to the prediction performance, resulting in a stagnation of the upper limit of prediction accuracy. In this paper, we establish a comprehensive wind power prediction system based on correct multi-scale clustering ensemble, similarity matching, and an improved whale optimization algorithm. Firstly, multiple classification algorithms combined with meteorological data are used to correct the extreme scenarios in the clustering results. Secondly, a library of typical fluctuation patterns is established based on the clustering ensemble results, and the optimal training dataset is determined by similarity matching. Finally, complete ensemble empirical mode decomposition with adaptive noise(CEEMDAN) is used to extract further the power data’s local features and time–frequency characteristics and to predict the modal components using the improved whale optimization algorithm(IWOA)-optimized BiLSTM network. The results of the three sets of experiments show that the proposed model is able to improve more than 10% in terms of MAE, RMSE, and MAPE compared to other models, and the model robustness is high.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Renewable Energy
Renewable Energy 工程技术-能源与燃料
CiteScore
18.40
自引率
9.20%
发文量
1955
审稿时长
6.6 months
期刊介绍: Renewable Energy journal is dedicated to advancing knowledge and disseminating insights on various topics and technologies within renewable energy systems and components. Our mission is to support researchers, engineers, economists, manufacturers, NGOs, associations, and societies in staying updated on new developments in their respective fields and applying alternative energy solutions to current practices. As an international, multidisciplinary journal in renewable energy engineering and research, we strive to be a premier peer-reviewed platform and a trusted source of original research and reviews in the field of renewable energy. Join us in our endeavor to drive innovation and progress in sustainable energy solutions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信