Selenium nanoparticles and maize: Understanding the impact on seed germination, growth, and nutrient interactions

Ezequiel García-Locascio, Edgardo I. Valenzuela, Pabel Cervantes-Avilés
{"title":"Selenium nanoparticles and maize: Understanding the impact on seed germination, growth, and nutrient interactions","authors":"Ezequiel García-Locascio,&nbsp;Edgardo I. Valenzuela,&nbsp;Pabel Cervantes-Avilés","doi":"10.1016/j.plana.2025.100144","DOIUrl":null,"url":null,"abstract":"<div><div>Selenium nanoparticles (Se NPs) are a burgeoning trend in agriculture and industry, with promising applications. However, multiple applications also raise concerns about the potential release of Se NPs in the environment and their impact on crops. This study aimed to assess the effects of Se NPs exposure on maize (<em>Zea mays</em>) seeds germinating in trays. We evaluated germination quality, seedling growth, fate of Se NPs, and their interactions with other nutrients at 1, 10, and 50 mg/L. The results revealed that 10 mg/L of Se NPs enhanced the germination rate by 16.6 %, while severely inhibiting it with 50 mg/L. The total chlorophyll content and Total Antioxidant Capacity (TAC) increased in a range of 51.8 – 155 % in the seedlings with the exposure of 10 mg/L; however, the proline content increased to 349.4 % with 50 mg/L. Se NPs showed synergisms with Mo, Mn, Mg, K, and Cu in the seed, Zn and Mo in the seedlings, and antagonisms with Mg, Mn, Fe, and Cu in the seedlings. Se content increased between 90 – 350 % in the seed and 97.6 – 1210.5 % in the seedlings. Transmission Electron Microscopy (TEM) micrographs showed deposition of Se NPs near the endosperm, where internalization over time could occur. This study reveals that while Se NPs can enhance maize germination and growth at specific concentrations, excessive exposure can severely affect the development of maize seeds and seedlings, potentially leading to significant economic losses.</div></div>","PeriodicalId":101029,"journal":{"name":"Plant Nano Biology","volume":"11 ","pages":"Article 100144"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Nano Biology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773111125000117","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Selenium nanoparticles (Se NPs) are a burgeoning trend in agriculture and industry, with promising applications. However, multiple applications also raise concerns about the potential release of Se NPs in the environment and their impact on crops. This study aimed to assess the effects of Se NPs exposure on maize (Zea mays) seeds germinating in trays. We evaluated germination quality, seedling growth, fate of Se NPs, and their interactions with other nutrients at 1, 10, and 50 mg/L. The results revealed that 10 mg/L of Se NPs enhanced the germination rate by 16.6 %, while severely inhibiting it with 50 mg/L. The total chlorophyll content and Total Antioxidant Capacity (TAC) increased in a range of 51.8 – 155 % in the seedlings with the exposure of 10 mg/L; however, the proline content increased to 349.4 % with 50 mg/L. Se NPs showed synergisms with Mo, Mn, Mg, K, and Cu in the seed, Zn and Mo in the seedlings, and antagonisms with Mg, Mn, Fe, and Cu in the seedlings. Se content increased between 90 – 350 % in the seed and 97.6 – 1210.5 % in the seedlings. Transmission Electron Microscopy (TEM) micrographs showed deposition of Se NPs near the endosperm, where internalization over time could occur. This study reveals that while Se NPs can enhance maize germination and growth at specific concentrations, excessive exposure can severely affect the development of maize seeds and seedlings, potentially leading to significant economic losses.
硒纳米颗粒和玉米:了解对种子发芽、生长和营养相互作用的影响
硒纳米颗粒在农业和工业中是一个新兴的趋势,具有广阔的应用前景。然而,多种应用也引起了人们对硒NPs在环境中的潜在释放及其对作物的影响的担忧。本研究旨在评估硒NPs暴露对玉米(Zea mays)种子在盘中发芽的影响。我们评估了1、10和50 mg/L硒NPs的发芽质量、幼苗生长、命运及其与其他营养物质的相互作用。结果表明,添加10 mg/L硒NPs可使发芽率提高16.6 %,添加50 mg/L可使发芽率严重降低。在10 mg/L处理下,幼苗的总叶绿素含量和总抗氧化能力(TAC)提高了51.8 ~ 155 %;脯氨酸含量为50 mg/L,提高到349.4 %。Se NPs与种子中的Mo、Mn、Mg、K、Cu和幼苗中的Zn、Mo具有协同作用,与幼苗中的Mg、Mn、Fe、Cu具有拮抗作用。种子硒含量增加90 ~ 350 %,幼苗硒含量增加97.6 ~ 1210.5 %。透射电镜(TEM)显微照片显示硒NPs沉积在胚乳附近,随着时间的推移可能发生内化。本研究表明,虽然特定浓度的硒NPs可以促进玉米的发芽和生长,但过量暴露会严重影响玉米种子和幼苗的发育,可能导致重大的经济损失。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信