Regional gray matter thickness correlations of the hearing and deaf feline brains

Q4 Neuroscience
Stephen G. Gordon , Alessandra Sacco , Stephen G. Lomber
{"title":"Regional gray matter thickness correlations of the hearing and deaf feline brains","authors":"Stephen G. Gordon ,&nbsp;Alessandra Sacco ,&nbsp;Stephen G. Lomber","doi":"10.1016/j.ynirp.2025.100239","DOIUrl":null,"url":null,"abstract":"<div><div>The overall function and associated structure of the brain changes dramatically following early-onset hearing loss in a process known as compensatory crossmodal plasticity. As the microscale changes to cerebral morphology driving these adaptations can be reflected macrostructurally in MRI analyses, high interregional correlations in features such as gray matter thickness are potentially indicative of functional relationships. To probe the changes in these associations following deafness using structure alone, perinatally-deafened and hearing control cats were scanned at 7T to obtain high-resolution T1-weighted images. After calculating regional thicknesses for 146 cortical areas, the 10,585 associated pairwise correlations were used to establish group-specific structural connectomes. Similar distributions of correlation strength were revealed between the two populations, however there was an overall increase in the density of the structurally-defined connectome following deafness. The connections demonstrating the most dramatic increases of correlational strength in the deprived group were those relating to the auditory and visual cortices, with a more balanced distribution of increases and decreases to connections involving solely non-sensory regions. In corroboration with previous feline structural- and diffusion-based neuroimaging literature, these results imply a reorganization of cortical gray matter to increase the overall processing of the remaining senses within a potentially less complex and more redundant connectome. The present study adds to the developing field of deafness literature through the implementation of novel analyses that add an additional perspective on neuroplasticity within the feline brain.</div></div>","PeriodicalId":74277,"journal":{"name":"Neuroimage. Reports","volume":"5 1","pages":"Article 100239"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroimage. Reports","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666956025000078","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Neuroscience","Score":null,"Total":0}
引用次数: 0

Abstract

The overall function and associated structure of the brain changes dramatically following early-onset hearing loss in a process known as compensatory crossmodal plasticity. As the microscale changes to cerebral morphology driving these adaptations can be reflected macrostructurally in MRI analyses, high interregional correlations in features such as gray matter thickness are potentially indicative of functional relationships. To probe the changes in these associations following deafness using structure alone, perinatally-deafened and hearing control cats were scanned at 7T to obtain high-resolution T1-weighted images. After calculating regional thicknesses for 146 cortical areas, the 10,585 associated pairwise correlations were used to establish group-specific structural connectomes. Similar distributions of correlation strength were revealed between the two populations, however there was an overall increase in the density of the structurally-defined connectome following deafness. The connections demonstrating the most dramatic increases of correlational strength in the deprived group were those relating to the auditory and visual cortices, with a more balanced distribution of increases and decreases to connections involving solely non-sensory regions. In corroboration with previous feline structural- and diffusion-based neuroimaging literature, these results imply a reorganization of cortical gray matter to increase the overall processing of the remaining senses within a potentially less complex and more redundant connectome. The present study adds to the developing field of deafness literature through the implementation of novel analyses that add an additional perspective on neuroplasticity within the feline brain.
听觉猫科动物与失聪猫科动物大脑区域灰质厚度的相关性
早发性听力损失后,大脑的整体功能和相关结构发生了巨大的变化,这一过程被称为代偿性跨模态可塑性。由于驱动这些适应的大脑形态的微观变化可以在MRI分析中从宏观结构上反映出来,因此灰质厚度等特征的高区域间相关性可能表明功能关系。为了仅使用结构来探讨耳聋后这些关联的变化,对围产期耳聋猫和听力对照组猫进行7T扫描,获得高分辨率t1加权图像。在计算146个皮质区域的区域厚度后,使用10,585个相关的成对相关性来建立群体特异性结构连接体。在两组人群中发现了相似的相关强度分布,但在耳聋后,结构定义连接体的密度总体上有所增加。在被剥夺的一组中,相关强度增加最显著的是那些与听觉和视觉皮层有关的连接,而仅涉及非感觉区域的连接的增加和减少分布更为平衡。与先前基于猫科动物结构和扩散的神经影像学文献相一致,这些结果表明,皮层灰质的重组,增加了在一个可能不那么复杂和更冗余的连接体中剩余感官的整体处理。本研究通过实施新颖的分析,增加了对猫大脑神经可塑性的额外视角,从而增加了耳聋文献的发展领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neuroimage. Reports
Neuroimage. Reports Neuroscience (General)
CiteScore
1.90
自引率
0.00%
发文量
0
审稿时长
87 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信