Micro-screw extrusion 3D printing of multiscale ternary nanocomposite absorbers – Part I: Comprehensive materials characterization and exceptional microwave absorption performance

IF 7.6 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Jiahang Zhang, Dongsheng Li, Mingming Wang
{"title":"Micro-screw extrusion 3D printing of multiscale ternary nanocomposite absorbers – Part I: Comprehensive materials characterization and exceptional microwave absorption performance","authors":"Jiahang Zhang,&nbsp;Dongsheng Li,&nbsp;Mingming Wang","doi":"10.1016/j.matdes.2025.113694","DOIUrl":null,"url":null,"abstract":"<div><div>In the context of structural-functional integration, developing advanced microwave-absorbing resin-based composites is an effective solution to combat electromagnetic pollution in military and civilian applications. The use of nanofillers in immiscible polymer blends has gained significant attention for their superior performance. This research employs micro-screw extrusion 3D printing to create a ternary nanocomposite with multi-walled carbon nanotubes, featuring a multi-scale structure and excellent microwave absorption. Nylon 12 and polypropylene serve as matrix materials. By adjusting the geometric structure and component ratios, efficient electromagnetic wave absorption is achieved. Results show that the selective distribution of MWCNTs enhances the composite’s conductivity and dielectric properties. The screw extrusion process proves advantageous for mass production, multi-material compatibility, and online blending, highlighting the nanocomposite’s potential for electromagnetic wave stealth, shielding, and flexible sensing applications.</div></div>","PeriodicalId":383,"journal":{"name":"Materials & Design","volume":"251 ","pages":"Article 113694"},"PeriodicalIF":7.6000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials & Design","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0264127525001145","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In the context of structural-functional integration, developing advanced microwave-absorbing resin-based composites is an effective solution to combat electromagnetic pollution in military and civilian applications. The use of nanofillers in immiscible polymer blends has gained significant attention for their superior performance. This research employs micro-screw extrusion 3D printing to create a ternary nanocomposite with multi-walled carbon nanotubes, featuring a multi-scale structure and excellent microwave absorption. Nylon 12 and polypropylene serve as matrix materials. By adjusting the geometric structure and component ratios, efficient electromagnetic wave absorption is achieved. Results show that the selective distribution of MWCNTs enhances the composite’s conductivity and dielectric properties. The screw extrusion process proves advantageous for mass production, multi-material compatibility, and online blending, highlighting the nanocomposite’s potential for electromagnetic wave stealth, shielding, and flexible sensing applications.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials & Design
Materials & Design Engineering-Mechanical Engineering
CiteScore
14.30
自引率
7.10%
发文量
1028
审稿时长
85 days
期刊介绍: Materials and Design is a multi-disciplinary journal that publishes original research reports, review articles, and express communications. The journal focuses on studying the structure and properties of inorganic and organic materials, advancements in synthesis, processing, characterization, and testing, the design of materials and engineering systems, and their applications in technology. It aims to bring together various aspects of materials science, engineering, physics, and chemistry. The journal explores themes ranging from materials to design and aims to reveal the connections between natural and artificial materials, as well as experiment and modeling. Manuscripts submitted to Materials and Design should contain elements of discovery and surprise, as they often contribute new insights into the architecture and function of matter.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信