Spatiotemporal evolution of multiple time scale precipitation in Yellow River Basin based on Köppen-Geiger Trend Indicator System

IF 4.7 2区 地球科学 Q1 WATER RESOURCES
Hao Ke , Wenzhuo Wang , Zengchuan Dong , Xinhua Zhu , Zhuozheng Li , Chao Lü , Dawei Jin , Weilin Liu
{"title":"Spatiotemporal evolution of multiple time scale precipitation in Yellow River Basin based on Köppen-Geiger Trend Indicator System","authors":"Hao Ke ,&nbsp;Wenzhuo Wang ,&nbsp;Zengchuan Dong ,&nbsp;Xinhua Zhu ,&nbsp;Zhuozheng Li ,&nbsp;Chao Lü ,&nbsp;Dawei Jin ,&nbsp;Weilin Liu","doi":"10.1016/j.ejrh.2025.102226","DOIUrl":null,"url":null,"abstract":"<div><h3>Study region</h3><div>The Yellow River Basin, situated in northern China.</div></div><div><h3>Study focus</h3><div>Precipitation has shown significant variability over the past century, understanding its evolving trends helps addressing the impacts of climate change on local water resources. The Köppen-Geiger Trend Indicator System was proposed, which divides the study region into various climate zones and calculates indicators for quantifying precipitation trends.</div></div><div><h3>New hydrological insights for the region</h3><div>Annual precipitation exhibits a significant decreasing trend in the Arid, steppe, cold (BSk) and Cold, dry winter, hot/warm summer (Dwa/Dwb) climate zones, while a significant increasing trend occurs in the Cold, dry winter, cold summer (Dwc) and Polar, tundra (ET) climate zones. Middle and lower reaches within the same climate zone exhibit differences in annual precipitation trends, highlighting the important impacts of geographical location. Monthly precipitation shows an increasing trend in winter (December–February) across most climate zones, indicating relatively stable changes in winter precipitation, while other seasons show changes between increasing and decreasing trends. Climate zones with decreasing annual precipitation also show greater variability in monthly precipitation, facing the dual challenges of decreasing water resources and extreme precipitation events.</div></div>","PeriodicalId":48620,"journal":{"name":"Journal of Hydrology-Regional Studies","volume":"58 ","pages":"Article 102226"},"PeriodicalIF":4.7000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydrology-Regional Studies","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214581825000503","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 0

Abstract

Study region

The Yellow River Basin, situated in northern China.

Study focus

Precipitation has shown significant variability over the past century, understanding its evolving trends helps addressing the impacts of climate change on local water resources. The Köppen-Geiger Trend Indicator System was proposed, which divides the study region into various climate zones and calculates indicators for quantifying precipitation trends.

New hydrological insights for the region

Annual precipitation exhibits a significant decreasing trend in the Arid, steppe, cold (BSk) and Cold, dry winter, hot/warm summer (Dwa/Dwb) climate zones, while a significant increasing trend occurs in the Cold, dry winter, cold summer (Dwc) and Polar, tundra (ET) climate zones. Middle and lower reaches within the same climate zone exhibit differences in annual precipitation trends, highlighting the important impacts of geographical location. Monthly precipitation shows an increasing trend in winter (December–February) across most climate zones, indicating relatively stable changes in winter precipitation, while other seasons show changes between increasing and decreasing trends. Climate zones with decreasing annual precipitation also show greater variability in monthly precipitation, facing the dual challenges of decreasing water resources and extreme precipitation events.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Hydrology-Regional Studies
Journal of Hydrology-Regional Studies Earth and Planetary Sciences-Earth and Planetary Sciences (miscellaneous)
CiteScore
6.70
自引率
8.50%
发文量
284
审稿时长
60 days
期刊介绍: Journal of Hydrology: Regional Studies publishes original research papers enhancing the science of hydrology and aiming at region-specific problems, past and future conditions, analysis, review and solutions. The journal particularly welcomes research papers that deliver new insights into region-specific hydrological processes and responses to changing conditions, as well as contributions that incorporate interdisciplinarity and translational science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信