Improved mode superposition method for hydrodynamic analysis of underwater piles under seismic excitations

IF 4.6 2区 工程技术 Q1 ENGINEERING, CIVIL
Po-Chen Chen, Jiunn-Shyang Chiou
{"title":"Improved mode superposition method for hydrodynamic analysis of underwater piles under seismic excitations","authors":"Po-Chen Chen,&nbsp;Jiunn-Shyang Chiou","doi":"10.1016/j.oceaneng.2025.120537","DOIUrl":null,"url":null,"abstract":"<div><div>Conventional mode superposition methods for seismic analysis of underwater structures are based on modal orthogonality. However, they introduce errors when dealing with hydrodynamic problems because the hydrodynamic term does not actually satisfy this property. Additionally, previous studies for hydrodynamic responses often assumed structures to be fixed on a rigid base; however, the embedded portion of piles cannot provide sufficient rigidity for the submerged portion as the rigid base does. In this study, we propose an improved method that addresses the non-orthogonality of the hydrodynamic term by incorporating the hydrodynamic force contributions from other modes. Furthermore, the method accounts for base flexibility by modeling the embedded portion of a pile as an equivalent spring matrix. Comparisons with the conventional method indicate that the hydrodynamic effects from other modes are significant under flexible base conditions or when there is pile-head mass. Moreover, parametric analyses of pile seismic responses under near-fault and far-field earthquakes reveal that base flexibility and pile-head mass significantly influence the hydrodynamic forces and associated pile response envelopes, depending on the proximity between the system's resonance frequency and the predominant frequencies of the input motions.</div></div>","PeriodicalId":19403,"journal":{"name":"Ocean Engineering","volume":"323 ","pages":"Article 120537"},"PeriodicalIF":4.6000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ocean Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0029801825002525","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

Conventional mode superposition methods for seismic analysis of underwater structures are based on modal orthogonality. However, they introduce errors when dealing with hydrodynamic problems because the hydrodynamic term does not actually satisfy this property. Additionally, previous studies for hydrodynamic responses often assumed structures to be fixed on a rigid base; however, the embedded portion of piles cannot provide sufficient rigidity for the submerged portion as the rigid base does. In this study, we propose an improved method that addresses the non-orthogonality of the hydrodynamic term by incorporating the hydrodynamic force contributions from other modes. Furthermore, the method accounts for base flexibility by modeling the embedded portion of a pile as an equivalent spring matrix. Comparisons with the conventional method indicate that the hydrodynamic effects from other modes are significant under flexible base conditions or when there is pile-head mass. Moreover, parametric analyses of pile seismic responses under near-fault and far-field earthquakes reveal that base flexibility and pile-head mass significantly influence the hydrodynamic forces and associated pile response envelopes, depending on the proximity between the system's resonance frequency and the predominant frequencies of the input motions.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Ocean Engineering
Ocean Engineering 工程技术-工程:大洋
CiteScore
7.30
自引率
34.00%
发文量
2379
审稿时长
8.1 months
期刊介绍: Ocean Engineering provides a medium for the publication of original research and development work in the field of ocean engineering. Ocean Engineering seeks papers in the following topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信