3D layer shape electrode of NiS in-situ growth on shaddock peel derived carbon for high-performance supercapacitors

IF 4.1 3区 化学 Q1 CHEMISTRY, ANALYTICAL
Yongda Tan, Yongfa Long, Zhentao Liu, Linsong Li, Huixin Jin, Meilong Wang
{"title":"3D layer shape electrode of NiS in-situ growth on shaddock peel derived carbon for high-performance supercapacitors","authors":"Yongda Tan,&nbsp;Yongfa Long,&nbsp;Zhentao Liu,&nbsp;Linsong Li,&nbsp;Huixin Jin,&nbsp;Meilong Wang","doi":"10.1016/j.jelechem.2025.118995","DOIUrl":null,"url":null,"abstract":"<div><div>Transition metal sulfide has excellent high electrical conductivity and excellent electrochemical activity. However, the use of transition metal sulfides as electrode materials still have two disadvantages. On one hand, their kinetic performance in redox reactions is poor. On the other hand, the Faraday redox reaction only occurs on the upper surface of the electrode material, and the short diffusion distance of the electrode into which the electrolyte enters makes it difficult to participate in the electrochemical charge storage inside the electrode, resulting in low energy density. Porous carbon has various pore structures and a large specific surface area. In addition, its surface possesses rich oxygen-containing active substances, which can enhance wettability. The addition of porous carbon to the sulfide can greatly improve its energy density. Hence, in this paper, a 5-SPC@NiS (NiS is grown in situ on grapefruit peel-derived carbon with a mass fraction of 5 %) with a layered sheet structure was synthesized by hydrothermal method, the specific capacitance of 5-SPC@NiS is as high as 1911 F g<sup>−1</sup> at 0.5 A g<sup>−1</sup>. It also shows excellent electrochemical performance in practical applications, with an energy density of 14.6 Wh kg<sup>−1</sup> (supercapacitor) and 31.3 Wh kg<sup>−1</sup> (zinc ion battery). Overall, it provides a new solution to the energy challenges.</div></div>","PeriodicalId":355,"journal":{"name":"Journal of Electroanalytical Chemistry","volume":"980 ","pages":"Article 118995"},"PeriodicalIF":4.1000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electroanalytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1572665725000682","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Transition metal sulfide has excellent high electrical conductivity and excellent electrochemical activity. However, the use of transition metal sulfides as electrode materials still have two disadvantages. On one hand, their kinetic performance in redox reactions is poor. On the other hand, the Faraday redox reaction only occurs on the upper surface of the electrode material, and the short diffusion distance of the electrode into which the electrolyte enters makes it difficult to participate in the electrochemical charge storage inside the electrode, resulting in low energy density. Porous carbon has various pore structures and a large specific surface area. In addition, its surface possesses rich oxygen-containing active substances, which can enhance wettability. The addition of porous carbon to the sulfide can greatly improve its energy density. Hence, in this paper, a 5-SPC@NiS (NiS is grown in situ on grapefruit peel-derived carbon with a mass fraction of 5 %) with a layered sheet structure was synthesized by hydrothermal method, the specific capacitance of 5-SPC@NiS is as high as 1911 F g−1 at 0.5 A g−1. It also shows excellent electrochemical performance in practical applications, with an energy density of 14.6 Wh kg−1 (supercapacitor) and 31.3 Wh kg−1 (zinc ion battery). Overall, it provides a new solution to the energy challenges.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.80
自引率
6.70%
发文量
912
审稿时长
2.4 months
期刊介绍: The Journal of Electroanalytical Chemistry is the foremost international journal devoted to the interdisciplinary subject of electrochemistry in all its aspects, theoretical as well as applied. Electrochemistry is a wide ranging area that is in a state of continuous evolution. Rather than compiling a long list of topics covered by the Journal, the editors would like to draw particular attention to the key issues of novelty, topicality and quality. Papers should present new and interesting electrochemical science in a way that is accessible to the reader. The presentation and discussion should be at a level that is consistent with the international status of the Journal. Reports describing the application of well-established techniques to problems that are essentially technical will not be accepted. Similarly, papers that report observations but fail to provide adequate interpretation will be rejected by the Editors. Papers dealing with technical electrochemistry should be submitted to other specialist journals unless the authors can show that their work provides substantially new insights into electrochemical processes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信