The influence of Sun’s and Moon’s shadows on cosmic-ray anisotropy

IF 4.2 3区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS
Xuan’ang Ye, Yi Zhang, Jiayin He, Shiping Zhao
{"title":"The influence of Sun’s and Moon’s shadows on cosmic-ray anisotropy","authors":"Xuan’ang Ye,&nbsp;Yi Zhang,&nbsp;Jiayin He,&nbsp;Shiping Zhao","doi":"10.1016/j.astropartphys.2025.103088","DOIUrl":null,"url":null,"abstract":"<div><div>Large-scale anisotropy, with amplitudes reaching approximately 0.1% at TeV energies, has been observed by multiple cosmic-ray experiments. The obstruction of cosmic rays by the Sun and Moon creates shadow effects, potentially impacting the observed cosmic ray anisotropy. To evaluate these effects, this study calculates the contributions of the Sun’s and Moon’s shadows to the overall cosmic-ray anisotropy in both local solar and sidereal time. The analysis reveals that in local sidereal time, the total 1D projection amplitude of the anisotropy is around 0.003%, which is significantly smaller than the observed cosmic-ray anisotropy. This indicates that the influence of the Sun’s and Moon’s shadows on cosmic-ray anisotropy analysis in local sidereal time is negligible. In contrast, in local solar time, the shadow-induced deficit appears in a very small time bin, with a magnitude comparable to that of the cosmic-ray solar anisotropy. This deficit could serve as a benchmark for validating anisotropy measurements in future facilities.</div></div>","PeriodicalId":55439,"journal":{"name":"Astroparticle Physics","volume":"168 ","pages":"Article 103088"},"PeriodicalIF":4.2000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astroparticle Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927650525000118","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Large-scale anisotropy, with amplitudes reaching approximately 0.1% at TeV energies, has been observed by multiple cosmic-ray experiments. The obstruction of cosmic rays by the Sun and Moon creates shadow effects, potentially impacting the observed cosmic ray anisotropy. To evaluate these effects, this study calculates the contributions of the Sun’s and Moon’s shadows to the overall cosmic-ray anisotropy in both local solar and sidereal time. The analysis reveals that in local sidereal time, the total 1D projection amplitude of the anisotropy is around 0.003%, which is significantly smaller than the observed cosmic-ray anisotropy. This indicates that the influence of the Sun’s and Moon’s shadows on cosmic-ray anisotropy analysis in local sidereal time is negligible. In contrast, in local solar time, the shadow-induced deficit appears in a very small time bin, with a magnitude comparable to that of the cosmic-ray solar anisotropy. This deficit could serve as a benchmark for validating anisotropy measurements in future facilities.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Astroparticle Physics
Astroparticle Physics 地学天文-天文与天体物理
CiteScore
8.00
自引率
2.90%
发文量
41
审稿时长
79 days
期刊介绍: Astroparticle Physics publishes experimental and theoretical research papers in the interacting fields of Cosmic Ray Physics, Astronomy and Astrophysics, Cosmology and Particle Physics focusing on new developments in the following areas: High-energy cosmic-ray physics and astrophysics; Particle cosmology; Particle astrophysics; Related astrophysics: supernova, AGN, cosmic abundances, dark matter etc.; Gravitational waves; High-energy, VHE and UHE gamma-ray astronomy; High- and low-energy neutrino astronomy; Instrumentation and detector developments related to the above-mentioned fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信