Long-lasting antimicrobial effect of multipurpose ZnO nanoparticle-loaded dental resins enhanced by blue light photodynamic therapy

IF 4.6 1区 医学 Q1 DENTISTRY, ORAL SURGERY & MEDICINE
Maria Luisa Leite , Patricia Comeau , Ala Zaghwan , Ya Shen , Adriana Pigozzo Manso
{"title":"Long-lasting antimicrobial effect of multipurpose ZnO nanoparticle-loaded dental resins enhanced by blue light photodynamic therapy","authors":"Maria Luisa Leite ,&nbsp;Patricia Comeau ,&nbsp;Ala Zaghwan ,&nbsp;Ya Shen ,&nbsp;Adriana Pigozzo Manso","doi":"10.1016/j.dental.2024.12.006","DOIUrl":null,"url":null,"abstract":"<div><h3>Objectives</h3><div>This study aimed to assess the potential of experimental dental resins containing ZnO nanoparticles (ZnO-NPs) for antimicrobial photodynamic therapy (aPDT) as a functional tool for the modulation of cariogenic biofilm in long-term.</div></div><div><h3>Methods</h3><div>Minimum inhibitory and bactericidal concentrations (MIC/MBC) of ZnO-NPs against Streptococcus mutans were initially determined under different energy densities of blue LED irradiation (0.00, 1.35, 6.75, or 20.25 J/cm<sup>2</sup>) to optimize aPDT parameters. Experimental dental resins were then formulated with 0 % (control), 5 %, 10 %, and 20 % ZnO-NPs. Resin disks (1 mm x 6 mm) were prepared to evaluate the antimicrobial and photocatalytic potential of the experimental groups associated with 0 (dark), 1, 2, or 4 light cycles of blue-light irradiation (20.25 J/cm<sup>2</sup>, each cycle). The CFU count and Live/Dead assays were performed on a cariogenic biofilm model (<em>S. mutans</em>) on fresh and 6-month aged resin disks.</div></div><div><h3>Results</h3><div>Blue light at 20.25 J/cm<sup>2</sup> decreased MIC (from 250 µg/mL to 125 µg/mL) and MBC (from 1000 µg/mL to 500 µg/mL), establishing the optimal aPDT protocol. Experimental resins with 5 %, 10 %, or 20 % ZnO-NPs, when exposed to 4 cycles of blue light, significantly reduced biofilm viability compared to controls, both initially and after aging. The 20 % ZnO-NP resin sustained &gt; 3.log10 CFU reduction after 6 months, even with 2 cycles of light. Live/Dead assays showed &gt; 50 % dead cells with the 20 % ZnO-NP resin after 2 light cycles.</div></div><div><h3>Significance</h3><div>ZnO-NP-loaded dental resins associated with blue light aPDT offer promise as a long-lasting antimicrobial alternative, potentially enhancing the control of pathogenic biofilms.</div></div>","PeriodicalId":298,"journal":{"name":"Dental Materials","volume":"41 3","pages":"Pages 347-355"},"PeriodicalIF":4.6000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dental Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0109564124003658","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0

Abstract

Objectives

This study aimed to assess the potential of experimental dental resins containing ZnO nanoparticles (ZnO-NPs) for antimicrobial photodynamic therapy (aPDT) as a functional tool for the modulation of cariogenic biofilm in long-term.

Methods

Minimum inhibitory and bactericidal concentrations (MIC/MBC) of ZnO-NPs against Streptococcus mutans were initially determined under different energy densities of blue LED irradiation (0.00, 1.35, 6.75, or 20.25 J/cm2) to optimize aPDT parameters. Experimental dental resins were then formulated with 0 % (control), 5 %, 10 %, and 20 % ZnO-NPs. Resin disks (1 mm x 6 mm) were prepared to evaluate the antimicrobial and photocatalytic potential of the experimental groups associated with 0 (dark), 1, 2, or 4 light cycles of blue-light irradiation (20.25 J/cm2, each cycle). The CFU count and Live/Dead assays were performed on a cariogenic biofilm model (S. mutans) on fresh and 6-month aged resin disks.

Results

Blue light at 20.25 J/cm2 decreased MIC (from 250 µg/mL to 125 µg/mL) and MBC (from 1000 µg/mL to 500 µg/mL), establishing the optimal aPDT protocol. Experimental resins with 5 %, 10 %, or 20 % ZnO-NPs, when exposed to 4 cycles of blue light, significantly reduced biofilm viability compared to controls, both initially and after aging. The 20 % ZnO-NP resin sustained > 3.log10 CFU reduction after 6 months, even with 2 cycles of light. Live/Dead assays showed > 50 % dead cells with the 20 % ZnO-NP resin after 2 light cycles.

Significance

ZnO-NP-loaded dental resins associated with blue light aPDT offer promise as a long-lasting antimicrobial alternative, potentially enhancing the control of pathogenic biofilms.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Dental Materials
Dental Materials 工程技术-材料科学:生物材料
CiteScore
9.80
自引率
10.00%
发文量
290
审稿时长
67 days
期刊介绍: Dental Materials publishes original research, review articles, and short communications. Academy of Dental Materials members click here to register for free access to Dental Materials online. The principal aim of Dental Materials is to promote rapid communication of scientific information between academia, industry, and the dental practitioner. Original Manuscripts on clinical and laboratory research of basic and applied character which focus on the properties or performance of dental materials or the reaction of host tissues to materials are given priority publication. Other acceptable topics include application technology in clinical dentistry and dental laboratory technology. Comprehensive reviews and editorial commentaries on pertinent subjects will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信