GTIGNet: Global Topology Interaction Graphormer Network for 3D hand pose estimation

IF 6 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Yanjun Liu , Wanshu Fan , Cong Wang , Shixi Wen , Xin Yang , Qiang Zhang , Xiaopeng Wei , Dongsheng Zhou
{"title":"GTIGNet: Global Topology Interaction Graphormer Network for 3D hand pose estimation","authors":"Yanjun Liu ,&nbsp;Wanshu Fan ,&nbsp;Cong Wang ,&nbsp;Shixi Wen ,&nbsp;Xin Yang ,&nbsp;Qiang Zhang ,&nbsp;Xiaopeng Wei ,&nbsp;Dongsheng Zhou","doi":"10.1016/j.neunet.2025.107221","DOIUrl":null,"url":null,"abstract":"<div><div>Estimating 3D hand poses from monocular RGB images presents a series of challenges, including complex hand structures, self-occlusions, and depth ambiguities. Existing methods often fall short of capturing the long-distance dependencies of skeletal and non-skeletal connections for hand joints. To address these limitations, we introduce the Global Topology Interaction Graphormer Network (GTIGNet), a novel deep learning architecture designed to improve 3D hand pose estimation. Our model incorporates a Context-Aware Attention Block (CAAB) within the 2D pose estimator to enhance the extraction of multi-scale features, yielding more accurate 2D joint heatmaps to support the task that followed. Additionally, we introduce a High-Order Graphormer that explicitly and implicitly models the topological structure of hand joints, thereby enhancing feature interaction. Ablation studies confirm the effectiveness of our approach, and experimental results on four challenging datasets, Rendered Hand Dataset (RHD), Stereo Hand Pose Benchmark (STB), First-Person Hand Action Benchmark (FPHA), and FreiHAND Dataset, indicate that GTIGNet achieves state-of-the-art performance in 3D hand pose estimation. Notably, our model achieves an impressive Mean Per Joint Position Error (MPJPE) of 9.98 mm on RHD, 6.12 mm on STB, 11.15 mm on FPHA and 10.97 mm on FreiHAND.</div></div>","PeriodicalId":49763,"journal":{"name":"Neural Networks","volume":"185 ","pages":"Article 107221"},"PeriodicalIF":6.0000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893608025001005","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Estimating 3D hand poses from monocular RGB images presents a series of challenges, including complex hand structures, self-occlusions, and depth ambiguities. Existing methods often fall short of capturing the long-distance dependencies of skeletal and non-skeletal connections for hand joints. To address these limitations, we introduce the Global Topology Interaction Graphormer Network (GTIGNet), a novel deep learning architecture designed to improve 3D hand pose estimation. Our model incorporates a Context-Aware Attention Block (CAAB) within the 2D pose estimator to enhance the extraction of multi-scale features, yielding more accurate 2D joint heatmaps to support the task that followed. Additionally, we introduce a High-Order Graphormer that explicitly and implicitly models the topological structure of hand joints, thereby enhancing feature interaction. Ablation studies confirm the effectiveness of our approach, and experimental results on four challenging datasets, Rendered Hand Dataset (RHD), Stereo Hand Pose Benchmark (STB), First-Person Hand Action Benchmark (FPHA), and FreiHAND Dataset, indicate that GTIGNet achieves state-of-the-art performance in 3D hand pose estimation. Notably, our model achieves an impressive Mean Per Joint Position Error (MPJPE) of 9.98 mm on RHD, 6.12 mm on STB, 11.15 mm on FPHA and 10.97 mm on FreiHAND.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neural Networks
Neural Networks 工程技术-计算机:人工智能
CiteScore
13.90
自引率
7.70%
发文量
425
审稿时长
67 days
期刊介绍: Neural Networks is a platform that aims to foster an international community of scholars and practitioners interested in neural networks, deep learning, and other approaches to artificial intelligence and machine learning. Our journal invites submissions covering various aspects of neural networks research, from computational neuroscience and cognitive modeling to mathematical analyses and engineering applications. By providing a forum for interdisciplinary discussions between biology and technology, we aim to encourage the development of biologically-inspired artificial intelligence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信