Multi-knowledge informed deep learning model for multi-point prediction of Alzheimer’s disease progression

IF 6 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Kai Wu , Hong Wang , Feiyan Feng , Tianyu Liu , Yanshen Sun
{"title":"Multi-knowledge informed deep learning model for multi-point prediction of Alzheimer’s disease progression","authors":"Kai Wu ,&nbsp;Hong Wang ,&nbsp;Feiyan Feng ,&nbsp;Tianyu Liu ,&nbsp;Yanshen Sun","doi":"10.1016/j.neunet.2025.107203","DOIUrl":null,"url":null,"abstract":"<div><div>The diagnosis of Alzheimer’s disease (AD) based on visual features-informed by clinical knowledge has achieved excellent results. Our study endeavors to present an innovative and detailed deep learning framework designed to accurately predict the progression of Alzheimer’s disease. We propose <strong>Mul-KMPP</strong>, a <strong>Mul</strong>ti-<strong>K</strong>nowledge Informed Deep Learning Model for <strong>M</strong>ulti-<strong>P</strong>oint <strong>P</strong>rediction of AD progression, intended to facilitate precise assessments of AD progression in older adults. Firstly, we designed a dual-path methodology to capture global and local brain characteristics for visual feature extraction (utilizing MRIs). Then, we developed a diagnostic module before the prediction module, leveraging AAL (Anatomical Automatic Labeling) knowledge. Following this, predictions are informed by clinical insights. For this purpose, we devised a new composite loss function, including diagnosis loss, prediction loss, and consistency loss of the two modules. To validate our model, we compiled a dataset comprising 819 samples and the results demonstrate that our Mul-KMPP model achieved an accuracy of 86.8%, sensitivity of 86.1%, specificity of 92.1%, and area under the curve (AUC) of 95.9%, significantly outperforming several competing diagnostic methods at every time point. The source code for our model is available at <span><span>https://github.com/Camelus-to/Mul-KMPP</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":49763,"journal":{"name":"Neural Networks","volume":"185 ","pages":"Article 107203"},"PeriodicalIF":6.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893608025000826","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The diagnosis of Alzheimer’s disease (AD) based on visual features-informed by clinical knowledge has achieved excellent results. Our study endeavors to present an innovative and detailed deep learning framework designed to accurately predict the progression of Alzheimer’s disease. We propose Mul-KMPP, a Multi-Knowledge Informed Deep Learning Model for Multi-Point Prediction of AD progression, intended to facilitate precise assessments of AD progression in older adults. Firstly, we designed a dual-path methodology to capture global and local brain characteristics for visual feature extraction (utilizing MRIs). Then, we developed a diagnostic module before the prediction module, leveraging AAL (Anatomical Automatic Labeling) knowledge. Following this, predictions are informed by clinical insights. For this purpose, we devised a new composite loss function, including diagnosis loss, prediction loss, and consistency loss of the two modules. To validate our model, we compiled a dataset comprising 819 samples and the results demonstrate that our Mul-KMPP model achieved an accuracy of 86.8%, sensitivity of 86.1%, specificity of 92.1%, and area under the curve (AUC) of 95.9%, significantly outperforming several competing diagnostic methods at every time point. The source code for our model is available at https://github.com/Camelus-to/Mul-KMPP.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Neural Networks
Neural Networks 工程技术-计算机:人工智能
CiteScore
13.90
自引率
7.70%
发文量
425
审稿时长
67 days
期刊介绍: Neural Networks is a platform that aims to foster an international community of scholars and practitioners interested in neural networks, deep learning, and other approaches to artificial intelligence and machine learning. Our journal invites submissions covering various aspects of neural networks research, from computational neuroscience and cognitive modeling to mathematical analyses and engineering applications. By providing a forum for interdisciplinary discussions between biology and technology, we aim to encourage the development of biologically-inspired artificial intelligence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信