Semi-supervised learning for multi-view and non-graph data using Graph Convolutional Networks

IF 6 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
F. Dornaika , J. Bi , J. Charafeddine , H. Xiao
{"title":"Semi-supervised learning for multi-view and non-graph data using Graph Convolutional Networks","authors":"F. Dornaika ,&nbsp;J. Bi ,&nbsp;J. Charafeddine ,&nbsp;H. Xiao","doi":"10.1016/j.neunet.2025.107218","DOIUrl":null,"url":null,"abstract":"<div><div>Semi-supervised learning with a graph-based approach has become increasingly popular in machine learning, particularly when dealing with situations where labeling data is a costly process. Graph Convolution Networks (GCNs) have been widely employed in semi-supervised learning, primarily on graph-structured data like citations and social networks. However, there exists a significant gap in applying these methods to non-graph multi-view data, such as collections of images. To bridge this gap, we introduce a novel deep semi-supervised multi-view classification model tailored specifically for non-graph data. This model independently reconstructs individual graphs using a powerful semi-supervised approach and subsequently merges them adaptively into a unified consensus graph. The consensus graph feeds into a unified GCN framework incorporating a label smoothing constraint.</div><div>To assess the efficacy of the proposed model, experiments were conducted across seven multi-view image datasets. Results demonstrate that this model excels in both the graph generation and semi-supervised classification phases, consistently outperforming classical GCNs and other existing semi-supervised multi-view classification approaches. <span><span><sup>1</sup></span></span></div></div>","PeriodicalId":49763,"journal":{"name":"Neural Networks","volume":"185 ","pages":"Article 107218"},"PeriodicalIF":6.0000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893608025000978","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Semi-supervised learning with a graph-based approach has become increasingly popular in machine learning, particularly when dealing with situations where labeling data is a costly process. Graph Convolution Networks (GCNs) have been widely employed in semi-supervised learning, primarily on graph-structured data like citations and social networks. However, there exists a significant gap in applying these methods to non-graph multi-view data, such as collections of images. To bridge this gap, we introduce a novel deep semi-supervised multi-view classification model tailored specifically for non-graph data. This model independently reconstructs individual graphs using a powerful semi-supervised approach and subsequently merges them adaptively into a unified consensus graph. The consensus graph feeds into a unified GCN framework incorporating a label smoothing constraint.
To assess the efficacy of the proposed model, experiments were conducted across seven multi-view image datasets. Results demonstrate that this model excels in both the graph generation and semi-supervised classification phases, consistently outperforming classical GCNs and other existing semi-supervised multi-view classification approaches. 1
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neural Networks
Neural Networks 工程技术-计算机:人工智能
CiteScore
13.90
自引率
7.70%
发文量
425
审稿时长
67 days
期刊介绍: Neural Networks is a platform that aims to foster an international community of scholars and practitioners interested in neural networks, deep learning, and other approaches to artificial intelligence and machine learning. Our journal invites submissions covering various aspects of neural networks research, from computational neuroscience and cognitive modeling to mathematical analyses and engineering applications. By providing a forum for interdisciplinary discussions between biology and technology, we aim to encourage the development of biologically-inspired artificial intelligence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信