{"title":"Semi-supervised learning for multi-view and non-graph data using Graph Convolutional Networks","authors":"F. Dornaika , J. Bi , J. Charafeddine , H. Xiao","doi":"10.1016/j.neunet.2025.107218","DOIUrl":null,"url":null,"abstract":"<div><div>Semi-supervised learning with a graph-based approach has become increasingly popular in machine learning, particularly when dealing with situations where labeling data is a costly process. Graph Convolution Networks (GCNs) have been widely employed in semi-supervised learning, primarily on graph-structured data like citations and social networks. However, there exists a significant gap in applying these methods to non-graph multi-view data, such as collections of images. To bridge this gap, we introduce a novel deep semi-supervised multi-view classification model tailored specifically for non-graph data. This model independently reconstructs individual graphs using a powerful semi-supervised approach and subsequently merges them adaptively into a unified consensus graph. The consensus graph feeds into a unified GCN framework incorporating a label smoothing constraint.</div><div>To assess the efficacy of the proposed model, experiments were conducted across seven multi-view image datasets. Results demonstrate that this model excels in both the graph generation and semi-supervised classification phases, consistently outperforming classical GCNs and other existing semi-supervised multi-view classification approaches. <span><span><sup>1</sup></span></span></div></div>","PeriodicalId":49763,"journal":{"name":"Neural Networks","volume":"185 ","pages":"Article 107218"},"PeriodicalIF":6.0000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893608025000978","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Semi-supervised learning with a graph-based approach has become increasingly popular in machine learning, particularly when dealing with situations where labeling data is a costly process. Graph Convolution Networks (GCNs) have been widely employed in semi-supervised learning, primarily on graph-structured data like citations and social networks. However, there exists a significant gap in applying these methods to non-graph multi-view data, such as collections of images. To bridge this gap, we introduce a novel deep semi-supervised multi-view classification model tailored specifically for non-graph data. This model independently reconstructs individual graphs using a powerful semi-supervised approach and subsequently merges them adaptively into a unified consensus graph. The consensus graph feeds into a unified GCN framework incorporating a label smoothing constraint.
To assess the efficacy of the proposed model, experiments were conducted across seven multi-view image datasets. Results demonstrate that this model excels in both the graph generation and semi-supervised classification phases, consistently outperforming classical GCNs and other existing semi-supervised multi-view classification approaches. 1
期刊介绍:
Neural Networks is a platform that aims to foster an international community of scholars and practitioners interested in neural networks, deep learning, and other approaches to artificial intelligence and machine learning. Our journal invites submissions covering various aspects of neural networks research, from computational neuroscience and cognitive modeling to mathematical analyses and engineering applications. By providing a forum for interdisciplinary discussions between biology and technology, we aim to encourage the development of biologically-inspired artificial intelligence.