Yue Gong , JoonOh Seo , Kyung-Su Kang , Mengnan Shi
{"title":"Automated recognition of construction worker activities using multimodal decision-level fusion","authors":"Yue Gong , JoonOh Seo , Kyung-Su Kang , Mengnan Shi","doi":"10.1016/j.autcon.2025.106032","DOIUrl":null,"url":null,"abstract":"<div><div>This paper proposes an automated approach for construction worker activity recognition by integrating video and acceleration data, employing a decision-level fusion method that combines classification results from each data modality using the Dempster-Shafer Theory (DS). To address uneven sensor reliability, the Category-wise Weighted Dempster-Shafer (CWDS) approach is further proposed, estimating category-wise weights during training and embedding them into the fusion process. An experimental study with ten participants performing eight construction activities showed that models trained using DS and CWDS outperformed single-modal approaches, achieving accuracies of 91.8% and 95.6%, about 7% and 10% higher than those of vision-based and acceleration-based models, respectively. Category-wise improvements were also observed, indicating that the proposed multimodal fusion approaches result in a more robust and balanced model. These results highlight the effectiveness of integrating vision and accelerometer data through decision-level fusion to reduce uncertainty in multimodal data and leverage the strengths of single sensor-based approaches.</div></div>","PeriodicalId":8660,"journal":{"name":"Automation in Construction","volume":"172 ","pages":"Article 106032"},"PeriodicalIF":9.6000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automation in Construction","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S092658052500072X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This paper proposes an automated approach for construction worker activity recognition by integrating video and acceleration data, employing a decision-level fusion method that combines classification results from each data modality using the Dempster-Shafer Theory (DS). To address uneven sensor reliability, the Category-wise Weighted Dempster-Shafer (CWDS) approach is further proposed, estimating category-wise weights during training and embedding them into the fusion process. An experimental study with ten participants performing eight construction activities showed that models trained using DS and CWDS outperformed single-modal approaches, achieving accuracies of 91.8% and 95.6%, about 7% and 10% higher than those of vision-based and acceleration-based models, respectively. Category-wise improvements were also observed, indicating that the proposed multimodal fusion approaches result in a more robust and balanced model. These results highlight the effectiveness of integrating vision and accelerometer data through decision-level fusion to reduce uncertainty in multimodal data and leverage the strengths of single sensor-based approaches.
期刊介绍:
Automation in Construction is an international journal that focuses on publishing original research papers related to the use of Information Technologies in various aspects of the construction industry. The journal covers topics such as design, engineering, construction technologies, and the maintenance and management of constructed facilities.
The scope of Automation in Construction is extensive and covers all stages of the construction life cycle. This includes initial planning and design, construction of the facility, operation and maintenance, as well as the eventual dismantling and recycling of buildings and engineering structures.