Neil R. Balchan , Tim W. Crowther , Gail Kratz , Stephen P. Mackessy
{"title":"Raptors without resistance: No evidence for endogenous inhibition of rattlesnake venom metalloproteinases in a Great Plains raptor assemblage","authors":"Neil R. Balchan , Tim W. Crowther , Gail Kratz , Stephen P. Mackessy","doi":"10.1016/j.toxicon.2025.108275","DOIUrl":null,"url":null,"abstract":"<div><div>Snake venoms are complex biochemical secretions under strong selection for prey subjugation, and venoms are tightly linked to the biotic communities that snakes inhabit. Physiological adaptations for venom resistance have been identified in various snake prey species, but fewer snake predators, with research in this area largely biased towards mammalian species. Fewer investigations have assayed for the presence of resistance mechanisms in avian systems. Birds of prey (hereafter “raptors”; orders Accipitriformes, Falconiformes, and Strigiformes) represent major sources of predation for snakes. Raptor dietary habits range from snake specialists to non-snake feeders, and this continuum of snake predation frequency among species creates the ideal system in which to explore the presence and strength of venom resistance. We assayed sera from a suite of Great Plains raptors against snake venom metalloproteinases (SVMPs) of the Prairie rattlesnake (<em>Crotalus v. viridis</em>) to test the general hypotheses that 1) raptor sera will display elevated SVMP inhibition compared to a naïve avian model (domestic chicken; <em>Gallus gallus</em>) and 2) raptor species with high levels of rattlesnake predation will more effectively inhibit SVMP activity than those that are not known to feed on rattlesnakes. We found that raptors do possess elevated SVMP inhibition in comparison to a naïve avian model, but this level of inhibition remains low and is unlikely to be biologically significant in detoxifying venoms. We found no evidence suggesting that inhibitory potential of different raptor sera corresponds to the level of rattlesnake predation associated with each species. The widespread lack of SVMP inhibition in diverse raptors underscores the complexity of venom resistance dynamics in natural systems and further suggests that physiological venom resistance mechanisms may be poorly developed in birds more broadly.</div></div>","PeriodicalId":23289,"journal":{"name":"Toxicon","volume":"256 ","pages":"Article 108275"},"PeriodicalIF":2.6000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicon","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0041010125000492","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Snake venoms are complex biochemical secretions under strong selection for prey subjugation, and venoms are tightly linked to the biotic communities that snakes inhabit. Physiological adaptations for venom resistance have been identified in various snake prey species, but fewer snake predators, with research in this area largely biased towards mammalian species. Fewer investigations have assayed for the presence of resistance mechanisms in avian systems. Birds of prey (hereafter “raptors”; orders Accipitriformes, Falconiformes, and Strigiformes) represent major sources of predation for snakes. Raptor dietary habits range from snake specialists to non-snake feeders, and this continuum of snake predation frequency among species creates the ideal system in which to explore the presence and strength of venom resistance. We assayed sera from a suite of Great Plains raptors against snake venom metalloproteinases (SVMPs) of the Prairie rattlesnake (Crotalus v. viridis) to test the general hypotheses that 1) raptor sera will display elevated SVMP inhibition compared to a naïve avian model (domestic chicken; Gallus gallus) and 2) raptor species with high levels of rattlesnake predation will more effectively inhibit SVMP activity than those that are not known to feed on rattlesnakes. We found that raptors do possess elevated SVMP inhibition in comparison to a naïve avian model, but this level of inhibition remains low and is unlikely to be biologically significant in detoxifying venoms. We found no evidence suggesting that inhibitory potential of different raptor sera corresponds to the level of rattlesnake predation associated with each species. The widespread lack of SVMP inhibition in diverse raptors underscores the complexity of venom resistance dynamics in natural systems and further suggests that physiological venom resistance mechanisms may be poorly developed in birds more broadly.
期刊介绍:
Toxicon has an open access mirror Toxicon: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review. An introductory offer Toxicon: X - full waiver of the Open Access fee.
Toxicon''s "aims and scope" are to publish:
-articles containing the results of original research on problems related to toxins derived from animals, plants and microorganisms
-papers on novel findings related to the chemical, pharmacological, toxicological, and immunological properties of natural toxins
-molecular biological studies of toxins and other genes from poisonous and venomous organisms that advance understanding of the role or function of toxins
-clinical observations on poisoning and envenoming where a new therapeutic principle has been proposed or a decidedly superior clinical result has been obtained.
-material on the use of toxins as tools in studying biological processes and material on subjects related to venom and antivenom problems.
-articles on the translational application of toxins, for example as drugs and insecticides
-epidemiological studies on envenoming or poisoning, so long as they highlight a previously unrecognised medical problem or provide insight into the prevention or medical treatment of envenoming or poisoning. Retrospective surveys of hospital records, especially those lacking species identification, will not be considered for publication. Properly designed prospective community-based surveys are strongly encouraged.
-articles describing well-known activities of venoms, such as antibacterial, anticancer, and analgesic activities of arachnid venoms, without any attempt to define the mechanism of action or purify the active component, will not be considered for publication in Toxicon.
-review articles on problems related to toxinology.
To encourage the exchange of ideas, sections of the journal may be devoted to Short Communications, Letters to the Editor and activities of the affiliated societies.