Advances and perspectives in biological control of postharvest fungal decay in citrus fruit utilizing yeast antagonists

IF 5 1区 农林科学 Q1 FOOD SCIENCE & TECHNOLOGY
Xiaojiao Li , Ou Chen , Wenjun Wang , Lili Deng , Shixiang Yao , Jian Ming , Hongyin Zhang , Kaifang Zeng
{"title":"Advances and perspectives in biological control of postharvest fungal decay in citrus fruit utilizing yeast antagonists","authors":"Xiaojiao Li ,&nbsp;Ou Chen ,&nbsp;Wenjun Wang ,&nbsp;Lili Deng ,&nbsp;Shixiang Yao ,&nbsp;Jian Ming ,&nbsp;Hongyin Zhang ,&nbsp;Kaifang Zeng","doi":"10.1016/j.ijfoodmicro.2025.111093","DOIUrl":null,"url":null,"abstract":"<div><div>Citrus fruits are one of the most highly grown fruit crops worldwide. A significant production problem, however, is their susceptibility to postharvest decay, caused by fungi such as <em>Penicillium</em> spp., resulting in significant losses in marketable yield. Some fungal species also produce mycotoxins that are potentially harmful to humans. Biological control of postharvest decay in citrus utilizing yeast antagonists has been shown to be a promising alternative to the use of synthetic fungicides to address increasingly stringent government regulatory policies and consumer demands. In this current review, we provide an overview of the research conducted on major postharvest decay fungi and their impact on the citrus industry. Then, the isolation and application of yeast antagonists used to manage postharvest decay in citrus is discussed, as well as their mechanisms of action, such as an oxidative burst of reactive oxygen species (ROS), iron depletion, and secondary metabolites. Lastly, the application of recent approaches (e.g., CRISPR/Cas9, RNAi, −omics technologies) in the study of citrus postharvest diseases is reviewed. For biological control to reach its full potential as a key component of an integrated disease management strategy for citrus, additional research will be required to explore the potential use of beneficial microbial consortia. The consortia will need to be comprised of individual core microbial species present in and on citrus fruit throughout its development and that metabolically complement each other in an interacting network.</div></div>","PeriodicalId":14095,"journal":{"name":"International journal of food microbiology","volume":"432 ","pages":"Article 111093"},"PeriodicalIF":5.0000,"publicationDate":"2025-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of food microbiology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168160525000388","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Citrus fruits are one of the most highly grown fruit crops worldwide. A significant production problem, however, is their susceptibility to postharvest decay, caused by fungi such as Penicillium spp., resulting in significant losses in marketable yield. Some fungal species also produce mycotoxins that are potentially harmful to humans. Biological control of postharvest decay in citrus utilizing yeast antagonists has been shown to be a promising alternative to the use of synthetic fungicides to address increasingly stringent government regulatory policies and consumer demands. In this current review, we provide an overview of the research conducted on major postharvest decay fungi and their impact on the citrus industry. Then, the isolation and application of yeast antagonists used to manage postharvest decay in citrus is discussed, as well as their mechanisms of action, such as an oxidative burst of reactive oxygen species (ROS), iron depletion, and secondary metabolites. Lastly, the application of recent approaches (e.g., CRISPR/Cas9, RNAi, −omics technologies) in the study of citrus postharvest diseases is reviewed. For biological control to reach its full potential as a key component of an integrated disease management strategy for citrus, additional research will be required to explore the potential use of beneficial microbial consortia. The consortia will need to be comprised of individual core microbial species present in and on citrus fruit throughout its development and that metabolically complement each other in an interacting network.
求助全文
约1分钟内获得全文 求助全文
来源期刊
International journal of food microbiology
International journal of food microbiology 工程技术-食品科技
CiteScore
10.40
自引率
5.60%
发文量
322
审稿时长
65 days
期刊介绍: The International Journal of Food Microbiology publishes papers dealing with all aspects of food microbiology. Articles must present information that is novel, has high impact and interest, and is of high scientific quality. They should provide scientific or technological advancement in the specific field of interest of the journal and enhance its strong international reputation. Preliminary or confirmatory results as well as contributions not strictly related to food microbiology will not be considered for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信