Cycle conditions for “Luce rationality”

IF 1 4区 经济学 Q3 ECONOMICS
José A. Rodrigues-Neto , Matthew Ryan , James Taylor
{"title":"Cycle conditions for “Luce rationality”","authors":"José A. Rodrigues-Neto ,&nbsp;Matthew Ryan ,&nbsp;James Taylor","doi":"10.1016/j.jmateco.2025.103094","DOIUrl":null,"url":null,"abstract":"<div><div>We extend and refine conditions for “Luce rationality” (i.e., the existence of a Luce – or logit – model) in the context of stochastic choice. When choice probabilities satisfy <em>positivity</em>, the <em>cyclical independence (CI)</em> condition of Ahumada and Ülkü (2018) and Echenique and Saito (2019) is necessary and sufficient for Luce rationality, even if choice is only observed for a restricted set of menus. We adapt results from the <em>cycles approach</em> (Rodrigues-Neto, 2009) to the common prior problem Harsanyi (1967–1968) to refine the CI condition, by reducing the number of cycle equations that need to be checked. A general algorithm is provided to identify a minimal sufficient set of equations. Three cases are discussed in detail: (i) when choice is only observed from binary menus, (ii) when all menus contain a common default; and (iii) when all menus contain an element from a common binary default set. Investigation of case (i) leads to a refinement of the famous product rule.</div></div>","PeriodicalId":50145,"journal":{"name":"Journal of Mathematical Economics","volume":"117 ","pages":"Article 103094"},"PeriodicalIF":1.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Economics","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304406825000114","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

Abstract

We extend and refine conditions for “Luce rationality” (i.e., the existence of a Luce – or logit – model) in the context of stochastic choice. When choice probabilities satisfy positivity, the cyclical independence (CI) condition of Ahumada and Ülkü (2018) and Echenique and Saito (2019) is necessary and sufficient for Luce rationality, even if choice is only observed for a restricted set of menus. We adapt results from the cycles approach (Rodrigues-Neto, 2009) to the common prior problem Harsanyi (1967–1968) to refine the CI condition, by reducing the number of cycle equations that need to be checked. A general algorithm is provided to identify a minimal sufficient set of equations. Three cases are discussed in detail: (i) when choice is only observed from binary menus, (ii) when all menus contain a common default; and (iii) when all menus contain an element from a common binary default set. Investigation of case (i) leads to a refinement of the famous product rule.
“卢斯合理性”的循环条件
我们在随机选择的背景下扩展和完善了“卢斯合理性”(即存在一个卢斯或logit模型)的条件。当选择概率满足正性时,Ahumada和Ülkü(2018)以及Echenique和Saito(2019)的周期独立性(CI)条件对于Luce合理性是必要和充分的,即使选择只在一组有限的菜单中被观察到。我们将循环方法的结果(Rodrigues-Neto, 2009)应用于常见的先验问题Harsanyi(1967-1968),通过减少需要检查的循环方程的数量来改进CI条件。给出了一种识别最小充分方程组的一般算法。详细讨论了三种情况:(i)当只从二进制菜单中观察到选择时,(ii)当所有菜单包含一个共同的默认值时;(iii)当所有菜单都包含来自通用二进制默认设置的元素时。对案例(i)的调查导致了对著名的乘积法则的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Mathematical Economics
Journal of Mathematical Economics 管理科学-数学跨学科应用
CiteScore
1.70
自引率
7.70%
发文量
73
审稿时长
12.5 weeks
期刊介绍: The primary objective of the Journal is to provide a forum for work in economic theory which expresses economic ideas using formal mathematical reasoning. For work to add to this primary objective, it is not sufficient that the mathematical reasoning be new and correct. The work must have real economic content. The economic ideas must be interesting and important. These ideas may pertain to any field of economics or any school of economic thought.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信