Ultrahigh effective mode area photonic crystal fibers with extremely low bending loss for long distance transmission application

IF 5.4 Q1 CHEMISTRY, ANALYTICAL
Asif Shariar, Mehedi Hasan Milan
{"title":"Ultrahigh effective mode area photonic crystal fibers with extremely low bending loss for long distance transmission application","authors":"Asif Shariar,&nbsp;Mehedi Hasan Milan","doi":"10.1016/j.sbsr.2024.100734","DOIUrl":null,"url":null,"abstract":"<div><div>In this work, an extremely large mode area (LMA) photonic crystal fiber (PCF) design has been proposed having single mode operation. A full-vectorial finite element method (FEM) approach is considered with perfectly matched layer (PML) boundary for hybrid cladding with fluorine-doped silica holes in the cladding. An ultrahigh effective mode area can be achieved along with maintaining robust single mode operation. The hybrid cladding structure of the fiber makes it possible to exhibit lower bending loss and confinement loss. The proposed PCF design achieves an effective mode area of <span><math><mn>1727.55</mn><mi>μ</mi><msup><mi>m</mi><mn>2</mn></msup></math></span> at straight state and <span><math><mn>719.08</mn><mi>μ</mi><msup><mi>m</mi><mn>2</mn></msup></math></span> at bending state for a radius of <span><math><mn>30</mn><mi>cm</mi></math></span> at a wavelength of <span><math><mn>1550</mn><mi>nm</mi></math></span>. The proposed fiber also exhibits both an extremely low confinement loss of <span><math><mn>4.745</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>4</mn></mrow></msup><mi>dB</mi><mo>/</mo><mi>Km</mi></math></span> and a bending loss of <span><math><mn>6.11</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>4</mn></mrow></msup><mi>dB</mi><mo>/</mo><mi>Km</mi></math></span> at <span><math><mn>30</mn><mi>cm</mi></math></span> of bending radius at <span><math><mn>1550</mn><mi>nm</mi></math></span> wavelength. Moreover, the ultrahigh effective area of the fiber makes it possible to obtain an ultralower non-linear coefficient.</div></div>","PeriodicalId":424,"journal":{"name":"Sensing and Bio-Sensing Research","volume":"47 ","pages":"Article 100734"},"PeriodicalIF":5.4000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensing and Bio-Sensing Research","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214180424001168","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, an extremely large mode area (LMA) photonic crystal fiber (PCF) design has been proposed having single mode operation. A full-vectorial finite element method (FEM) approach is considered with perfectly matched layer (PML) boundary for hybrid cladding with fluorine-doped silica holes in the cladding. An ultrahigh effective mode area can be achieved along with maintaining robust single mode operation. The hybrid cladding structure of the fiber makes it possible to exhibit lower bending loss and confinement loss. The proposed PCF design achieves an effective mode area of 1727.55μm2 at straight state and 719.08μm2 at bending state for a radius of 30cm at a wavelength of 1550nm. The proposed fiber also exhibits both an extremely low confinement loss of 4.745×104dB/Km and a bending loss of 6.11×104dB/Km at 30cm of bending radius at 1550nm wavelength. Moreover, the ultrahigh effective area of the fiber makes it possible to obtain an ultralower non-linear coefficient.
具有超低弯曲损耗的超高有效模面积光子晶体光纤,适用于远距离传输
本文提出了一种单模工作的极大模面积光子晶体光纤(PCF)设计方案。采用完全匹配层(PML)边界的全矢量有限元方法,研究了包层中掺氟硅孔的杂化包层问题。在保持稳健的单模工作的同时,可以实现超高的有效模面积。光纤的杂化包层结构使得光纤具有较低的弯曲损耗和约束损耗。所设计的PCF在1550nm波长下,半径为30cm,直线状态下有效模面积为1727.55μm2,弯曲状态下有效模面积为719.08μm2。该光纤在1550nm波长下具有极低的约束损耗4.745×10−4dB/Km和弯曲损耗6.11×10−4dB/Km。此外,光纤的超高有效面积使得获得超低的非线性系数成为可能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Sensing and Bio-Sensing Research
Sensing and Bio-Sensing Research Engineering-Electrical and Electronic Engineering
CiteScore
10.70
自引率
3.80%
发文量
68
审稿时长
87 days
期刊介绍: Sensing and Bio-Sensing Research is an open access journal dedicated to the research, design, development, and application of bio-sensing and sensing technologies. The editors will accept research papers, reviews, field trials, and validation studies that are of significant relevance. These submissions should describe new concepts, enhance understanding of the field, or offer insights into the practical application, manufacturing, and commercialization of bio-sensing and sensing technologies. The journal covers a wide range of topics, including sensing principles and mechanisms, new materials development for transducers and recognition components, fabrication technology, and various types of sensors such as optical, electrochemical, mass-sensitive, gas, biosensors, and more. It also includes environmental, process control, and biomedical applications, signal processing, chemometrics, optoelectronic, mechanical, thermal, and magnetic sensors, as well as interface electronics. Additionally, it covers sensor systems and applications, µTAS (Micro Total Analysis Systems), development of solid-state devices for transducing physical signals, and analytical devices incorporating biological materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信