{"title":"Aerodynamic characteristics of windbreak wall–wind barrier transition section along high-speed railways during strong crosswinds","authors":"E Deng , Ling-Yi Diao , Huan Yue , Yue Dong","doi":"10.1016/j.jweia.2025.106038","DOIUrl":null,"url":null,"abstract":"<div><div>In the embankment–bridge transition section of high-speed railroads, solid windbreak walls and porous wind barriers serve as primary engineering measures to mitigate the effects of strong winds. This study investigates the mechanisms by which the aerodynamic performance of the transition section between solid windbreak walls and porous wind barriers deteriorates. Aerodynamic loads on trains, bridges, and wind barriers are analyzed in this study, which also examines the evolution of flow field characteristics and power spectral density (PSD) across spatial and temporal scales, based on wind tunnel tests, flow visualization tests, and computational fluid dynamics methods. The results reveal that the presence of double-sided wind barriers alters the distribution of turbulence intensity and vortex structures near the bridge–wind barriers compared to single-sided wind barriers. Additionally, double-sided wind barriers greatly increase the aerodynamic loads on trains and bridge–wind barriers compared to single-sided wind barriers. Furthermore, the peak PSD values for bridge-wind barriers with double-sided wind barriers are 1.9–4 times higher than those with single-sided wind barriers. Consequently, the single-sided wind barrier may be a more suitable choice for handling unidirectional crosswinds, considering construction costs and structural safety concerns for both the bridge and the wind barrier.</div></div>","PeriodicalId":54752,"journal":{"name":"Journal of Wind Engineering and Industrial Aerodynamics","volume":"258 ","pages":"Article 106038"},"PeriodicalIF":4.2000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Wind Engineering and Industrial Aerodynamics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167610525000340","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
In the embankment–bridge transition section of high-speed railroads, solid windbreak walls and porous wind barriers serve as primary engineering measures to mitigate the effects of strong winds. This study investigates the mechanisms by which the aerodynamic performance of the transition section between solid windbreak walls and porous wind barriers deteriorates. Aerodynamic loads on trains, bridges, and wind barriers are analyzed in this study, which also examines the evolution of flow field characteristics and power spectral density (PSD) across spatial and temporal scales, based on wind tunnel tests, flow visualization tests, and computational fluid dynamics methods. The results reveal that the presence of double-sided wind barriers alters the distribution of turbulence intensity and vortex structures near the bridge–wind barriers compared to single-sided wind barriers. Additionally, double-sided wind barriers greatly increase the aerodynamic loads on trains and bridge–wind barriers compared to single-sided wind barriers. Furthermore, the peak PSD values for bridge-wind barriers with double-sided wind barriers are 1.9–4 times higher than those with single-sided wind barriers. Consequently, the single-sided wind barrier may be a more suitable choice for handling unidirectional crosswinds, considering construction costs and structural safety concerns for both the bridge and the wind barrier.
期刊介绍:
The objective of the journal is to provide a means for the publication and interchange of information, on an international basis, on all those aspects of wind engineering that are included in the activities of the International Association for Wind Engineering http://www.iawe.org/. These are: social and economic impact of wind effects; wind characteristics and structure, local wind environments, wind loads and structural response, diffusion, pollutant dispersion and matter transport, wind effects on building heat loss and ventilation, wind effects on transport systems, aerodynamic aspects of wind energy generation, and codification of wind effects.
Papers on these subjects describing full-scale measurements, wind-tunnel simulation studies, computational or theoretical methods are published, as well as papers dealing with the development of techniques and apparatus for wind engineering experiments.