Bin Chen , Guo He , Lin Hu , Heng Li , Miaoben Wang , Rui Zhang , Kai Gao
{"title":"Energy management of electric vehicles based on improved long short term memory network and data-enabled predictive control","authors":"Bin Chen , Guo He , Lin Hu , Heng Li , Miaoben Wang , Rui Zhang , Kai Gao","doi":"10.1016/j.apenergy.2025.125456","DOIUrl":null,"url":null,"abstract":"<div><div>As a popular energy management strategy (EMS) in electric vehicles with hybrid energy storage systems (HESS), model predictive control (MPC) is vulnerable to model accuracy and parameter sensitivity effects with existing parametric modeling methods. This paper proposes a novel EMS based on hierarchical data-driven predictive control. The upper layer utilizes an optimized long short-term memory (LSTM) network for trajectory prediction, enabling the acquisition of cost-effective load power demands for the lower layer. In the lower layer, a data-enabled predictive control (DeePC) is proposed for the HESS to achieve optimal power distribution between the battery and supercapacitor while minimizing battery capacity loss. Unlike conventional MPC, DeePC is based on a non-parametric model built solely from input–output data of the HESS, enabling agile handling of diverse nonlinearities and uncertainties across different tasks and environments. Comparison with nonlinear model predictive control shows that DeePC reduces the total operating cost by 22.68%, with optimization results closer to offline dynamic programming results. Furthermore, the effectiveness of the proposed DeePC method is validated through hardware-in-the-loop (HIL).</div></div>","PeriodicalId":246,"journal":{"name":"Applied Energy","volume":"384 ","pages":"Article 125456"},"PeriodicalIF":10.1000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306261925001862","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
As a popular energy management strategy (EMS) in electric vehicles with hybrid energy storage systems (HESS), model predictive control (MPC) is vulnerable to model accuracy and parameter sensitivity effects with existing parametric modeling methods. This paper proposes a novel EMS based on hierarchical data-driven predictive control. The upper layer utilizes an optimized long short-term memory (LSTM) network for trajectory prediction, enabling the acquisition of cost-effective load power demands for the lower layer. In the lower layer, a data-enabled predictive control (DeePC) is proposed for the HESS to achieve optimal power distribution between the battery and supercapacitor while minimizing battery capacity loss. Unlike conventional MPC, DeePC is based on a non-parametric model built solely from input–output data of the HESS, enabling agile handling of diverse nonlinearities and uncertainties across different tasks and environments. Comparison with nonlinear model predictive control shows that DeePC reduces the total operating cost by 22.68%, with optimization results closer to offline dynamic programming results. Furthermore, the effectiveness of the proposed DeePC method is validated through hardware-in-the-loop (HIL).
期刊介绍:
Applied Energy serves as a platform for sharing innovations, research, development, and demonstrations in energy conversion, conservation, and sustainable energy systems. The journal covers topics such as optimal energy resource use, environmental pollutant mitigation, and energy process analysis. It welcomes original papers, review articles, technical notes, and letters to the editor. Authors are encouraged to submit manuscripts that bridge the gap between research, development, and implementation. The journal addresses a wide spectrum of topics, including fossil and renewable energy technologies, energy economics, and environmental impacts. Applied Energy also explores modeling and forecasting, conservation strategies, and the social and economic implications of energy policies, including climate change mitigation. It is complemented by the open-access journal Advances in Applied Energy.