Yihui Li , Chenyu Yan , Xiongbo Dong , Aidong Tang , Huaming Yang
{"title":"Halloysite modulated MoC-MoN heterojunction for high-performance LiS Batteries","authors":"Yihui Li , Chenyu Yan , Xiongbo Dong , Aidong Tang , Huaming Yang","doi":"10.1016/j.clay.2025.107709","DOIUrl":null,"url":null,"abstract":"<div><div>Transition metal carbide-nitride heterojunctions have gained great attention in Li<img>S batteries for overcoming the issues such as polysulfide dissolution, poor electrical conductivity of the cathode, and sluggish electrode reaction kinetics. However, precisely designing and synthesizing these potentially important materials is still challenging. Herein, a novel strategy that employs halloysite for MoC-MoN heterojunction with a precisely regulated interface (HNT/MoC-MoN) is proposed. The results show that halloysite surfaces abundant in hydroxyl groups can induce the formation of MoC-MoN heterojunction via enhancing charge transfer at the interface between halloysite and MoC-MoN. The optimized formation of the MoC-MoN heterojunction accelerates the electron migration and the conversion kinetics of lithium polysulfide (LiPSs). By optimizing the design, the synthesized HNT/MoC-MoN composite demonstrates excellent electrochemical performance in Li<img>S batteries, achieving an initial specific capacity of 1100 mAh g<sup>−1</sup> at 0.2C and maintaining a capacity of 605 mAh g<sup>−1</sup> after 300 cycles. This work may provide valuable insights for the application of natural minerals in Li<img>S batteries.</div></div>","PeriodicalId":245,"journal":{"name":"Applied Clay Science","volume":"267 ","pages":"Article 107709"},"PeriodicalIF":5.3000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Clay Science","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169131725000146","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Transition metal carbide-nitride heterojunctions have gained great attention in LiS batteries for overcoming the issues such as polysulfide dissolution, poor electrical conductivity of the cathode, and sluggish electrode reaction kinetics. However, precisely designing and synthesizing these potentially important materials is still challenging. Herein, a novel strategy that employs halloysite for MoC-MoN heterojunction with a precisely regulated interface (HNT/MoC-MoN) is proposed. The results show that halloysite surfaces abundant in hydroxyl groups can induce the formation of MoC-MoN heterojunction via enhancing charge transfer at the interface between halloysite and MoC-MoN. The optimized formation of the MoC-MoN heterojunction accelerates the electron migration and the conversion kinetics of lithium polysulfide (LiPSs). By optimizing the design, the synthesized HNT/MoC-MoN composite demonstrates excellent electrochemical performance in LiS batteries, achieving an initial specific capacity of 1100 mAh g−1 at 0.2C and maintaining a capacity of 605 mAh g−1 after 300 cycles. This work may provide valuable insights for the application of natural minerals in LiS batteries.
期刊介绍:
Applied Clay Science aims to be an international journal attracting high quality scientific papers on clays and clay minerals, including research papers, reviews, and technical notes. The journal covers typical subjects of Fundamental and Applied Clay Science such as:
• Synthesis and purification
• Structural, crystallographic and mineralogical properties of clays and clay minerals
• Thermal properties of clays and clay minerals
• Physico-chemical properties including i) surface and interface properties; ii) thermodynamic properties; iii) mechanical properties
• Interaction with water, with polar and apolar molecules
• Colloidal properties and rheology
• Adsorption, Intercalation, Ionic exchange
• Genesis and deposits of clay minerals
• Geology and geochemistry of clays
• Modification of clays and clay minerals properties by thermal and physical treatments
• Modification by chemical treatments with organic and inorganic molecules(organoclays, pillared clays)
• Modification by biological microorganisms. etc...